
Transactions on Machine Learning 

and Data Mining 

Vol. 6, No.2 (2013) 45-80 

ISSN: 1865-6781, 
ISBN: 978-3-942952-26-2 

 

 

 

A Phrase-based Ontology Enabled Semantic Processing 

System for Web Search 

Joseph Leone and Dong-Guk Shin 

University of Connecticut, Department of Computer Science, 

Storrs, CT 06269, USA 

{Joseph.2.Leone, Shin}@uconn.edu 

Abstract. Semantic processing system (SPS) is a system that performs phrase 

search of web content. SPS takes a user query in natural language, converts it to 

a keyword query, expands the keyword query with synonyms, hypernyms, hy-

ponyms, and meronyms, and presents the keyword query to a search engine. 

SPS then sifts through the search engine result pages extracting grammatical 

and semantic information from each page for computing the page’s relevance to 

the natural language query. SPS' relevance computation uses semantic matching 

of phrases rather than term-and-document frequency weighting—a method that 

is most commonly used by existing web search engines. SPS consults an ontol-

ogy that is both “crowd-sourced,” i.e., built collaboratively and incrementally 

by the large number of users and “auto-learned,” i.e., contextually inferred from 

sentences containing desired words. SPS would be suitable for the areas of bi-

omedical literature mining, legal document review and discovery, and 

news/RSS feed monitoring because these are laden with prose text. We imple-

mented a prototype SPS, experimented with it and demonstrate that SPS outper-

forms a representative keyword based search engine. The strength of SPS stems 

from its exploitation of phrase semantics, which is not used in the conventional 

search engines.  

Keywords: Web content mining; semantic processing; dynamic ontology de-

velopment; collaboration system; biomedical literature mining. 



46  Joseph Leone and Dong-Guk Shin 

 

1 Introduction 

One of the major problems with the Internet is its inability to find quality information 

with a higher precision. Web search engines produce either a list of too many items or 

a list of too few, with most of the items not relevant to users' interest/query. In many 

cases, the search outcome does include relevant items but currently, web surfers have 

the tedious and daunting task of sifting through web search result pages to find the 

relevant/interesting information. This problem is further exacerbated in biomedical 

literature finding because search terms are scientific words that tend to be more 

phrase-oriented rather than a collection of multiple singular words.  

The current manner of web searching can be divided into two phases: the “look” 

phase and the “find” phase. In the “look” phase a user presents keywords to the search 

engine and the search engine returns a set of pages the engine considers relevant to 

the user. In the “find” phase the user sifts through the search engine results to find the 

actual relevant/interesting information. We say actual because search engines either 

may not return any relevant information at all or the relevant information is buried 

somewhere in the collection of returned pages. 

An examination of the look phase reveals why relevant information is usually bur-

ied. Using user-supplied keywords, a search engine retrieves pages that contain those 

keywords. The search engine then applies ad-hoc heuristics and machine learning 

techniques to the retrieved pages to compute their relevance. The heuristics employed 

are word position and utilization of HTML markup; Google uses the PageRank [1] 

algorithm. In Google's PageRank algorithm, linking determines relevance. The more 

links point to a particular page the higher Google believes the page to be relevant. If 

few links point to a page, and those links are deemed high quality (e.g., from universi-

ties, government entities, hospitals, etc.), then the page is also considered relevant. 

The typical machine learning techniques employed by search engines are word fre-

quency, information gain, odds ratio, and Bayesian analysis on the text words. 

Using heuristics and machine learning methods are helpful in computing page rel-

evance. However, the relevance measure search engines compute is generally not 

accurate because both heuristics and statistics-based machine learning techniques are 

unable to deal with 

1. polysemy at the phrase level (e.g. "juvenile victims of crime" vs. "victims of juve-

nile crime") 

2. synonymy at the word level, i.e. different words having almost the same meaning 

("throttle" & "accelerator"; "road" & "street"), and 

3. homonymy at the phrase and word level, i.e. words having the same spelling but 

different meanings ("soap bar" & "singles' bar"; "north pole" & "ski pole") 

In addition, heuristics and machine learning methods sometimes produce results for 

purely statistical reasons with no real “semantic” relevance to the user’s query. 

We argue that if Web search incorporates even partial natural language capabilities 

that could extract grammatical and semantic information from both the user's query 

and from visited pages, relevance could be computed more precisely and the quality 

of the search results would be greatly improved [2]. We propose a semantic pro-



A Phrase-based Ontology Enabled Semantic Processing System   47 

 

cessing system (SPS) that improves Web search by increasing keyword quality during 

the look phase and automating the find phase. The intent of our approach is not to 

replace current search engines (e.g. Google), but to work in conjunction with them. 

The SPS is layered between the search engine and the human user. 

Section 2 discusses related work. Section 3 describes SPS, its components, SPS 

logical form (or simply, SP form), the internal knowledge representation formalism 

used by SPS, and ontology construction in SPS. Section 4 shows SPS processing que-

ries against the biological literature. Section 5 describes a method for evaluating SPS 

performance. Section 6 describes our experimental set-up and empirical results. Sec-

tion 7 is the conclusion. 

2 Related Work 

Existing web search methods can be grouped into two categories: the bag-of-words 

hypothesis and the semantic web model. In the bag-of-words hypothesis [3] a docu-

ment is viewed as a collection of words, and the frequencies of words in the document 

(i.e. bag) indicate the relevance of the document to a query (of keywords). Traditional 

search engines such Google, Bing, Yandex, Yahoo, etc. are based on the bag-of-

words paradigm.  

In the semantic web model, document words/content are not to carry any meaning. 

Instead another set of words that annotate the document are to signify the document's 

meaning. These other words are defined in an external ontology (RDFS[4]/OWL[5]), 

and "things" (e.g. people, places, events, music, movies, organizations, or just about 

any concept) mentioned in a document are annotated by Resource Description 

Framework (RDF) statements (also called RDF triples) that refer to the ontology 

words [6]. RDF is based on the ideas that resources have properties and that state-

ments, which specify the properties and values, can describe resources. RDF state-

ments are formed by three parts, called "subject" (resource), "predicate" (property), 

and "object" (value). Each subject, predicate, and object is a Uniform Resource Iden-

tifier (URI) that points to a Web resource (i.e., ontology word). Search engines such 

as Swoogle [7], Falcons [8], SWSE [9], Watson [10], and GoWeb [11] are built on the 

semantic web model.  

We suggest that SPS introduces a new category of search method, called parsed-

prose. In the parsed-prose paradigm a document is viewed as a collection of inter-

related sentences, a coarse-level parsing is performed on the document prose text, and 

the parse result in conjunction with an ontology is used to compute the document 

relevance to the search query. "Coarse-level" means that the parse ignores grammati-

cal elements (i.e. passive, active, infinitival, etc.) that indicate fine distinctions in 

meaning. A SPS spinoff system called VisuText [12], more clearly illustrates this 

parsed-prose paradigm.  

We further summarize and compare these three paradigms in Table 1. One im-

portant note we emphasize is that SPS does not concern the Semantic Web. We elabo-

rate some of the differences between SPS and the Semantic Web (SW). 



48  Joseph Leone and Dong-Guk Shin 

 

Table 1. Paradigms of Information Retrieval 

Paradigms/Models of Information Retrieval 

Paradigm parsed-prose Semantic Web bag-of-words 

Representative 

search engines 

SPS Swoogle [7], Falcons [8], 

SWSE [9], GoWeb [11], 

Watson [10] 

Google, Yandex, 

Bing, Yahoo, Duck-

DuckGo 

Search query 

format 

Natural language 

phrase or sentence 

Keyword Keyword 

Operates over Natural language 

prose text 

Constructed language 

(RDF, RDFS/OWL, RDFa 

[13,14]) consciously de-

vised for annotating 

WWW content with 

metadata. 

Text words, html/xml 

markup, anchor text, 

microdata [15], mi-

croformats [16] 

Linguistic 

meaning 

Differential Referential Statistical 

Primary car-

rier of mean-

ing 

Words in the context 

of natural language 

prose text 

Annotation (i.e., tags) in 

the form of RDF, RDFa 

Words, markup, 

microdata [15], mi-

croformat [16] 

Processing 

atomic unit 

SP form RDF triple word 

Ontology 

(number of) 

One ontology cover-

ing all domains. 

Word sense deter-

mined by context of 

word in sentence. 

Different ontologies for 

different domains and 

word senses. Currently 

4,400 different ontologies 

exist. 

n/a 

Ontology 

extension 

Human or Au-

toLearn, which ex-

tracts relations as it 

reads prose text, and 

updates ontology 

with learned rela-

tions. 

Uses SWRL [17] to extend 

OWL [5] with new rela-

tions. 

n/a. However, per-

forms keyword ex-

pansion. 

Ranking & 

Relevance 

# of phrases in query 

that match # of 

phrases in target 

sentence. 

Links-based analysis ap-

plied to Linked Data [18] 

entities. 

Links-based analysis 

applied to web pages 

(i.e., PageRank [1]) 

Data aggrega-

tion 

n/a. Works only on 

prose text. Ability to 

understand query 

intent being devel-

oped. 

RDF enables data-

integration over data 

sourced from arbitrarily 

many sources (in theory). 

Performed by human. 

 

 



A Phrase-based Ontology Enabled Semantic Processing System   49 

 

    SP Form (SPF) vs RDF triples.  SPS uses internal knowledge representation for-

malism, called SP form (SPF), which will be formally defined in Section 3.1. On the 

surface SPF and RDF triples may look similar since both are composed of three parts. 

However they are very different in what their respective constituents were derived 

from and are intended to describe, and function. SPF describes and is derived from 

the lexical structure of natural language (i.e., English), and thus is a computable rep-

resentation of English prose text. The SPF vocabulary (i.e., participants) comes from 

words, processed by SPS, which naturally occur in English prose text. A single dis-

tinct SPF participant (i.e. the analogue of a subject or object in RDF) is able to encode 

thirteen different kinds of meaning (see Table 2). 

 

Table 2. Participant Referent Field Types 

Type SP Participant (encoding) English reading 

generic dog a dog 

generic set (dog (*)) dogs, some dogs 

generic counted set (dog (*) @5) five dogs 

individual (dog Snoopy) Snoopy, the dog Snoopy 

specified set (dog (Snoopy Lassie)) Snoopy and Lassie 

definite reference (dog $) the dog 

definite set reference (dog (*) $) the dogs 

measure (speed @55) speed 55 

universal quantifier (dog ∀)  (dog @every) every dog 

universal negative (dog ~)   (dog @no) no dog 

universal plural (dog (*) ∀) (dog (*) 

@every) 

all dogs 

universal plural nega-

tive 

(dog (*) ~) (dog (*) @no) no dogs 

fuzzy plural quantifier (dog (*) @many) many dogs 

 

    The SPF role (i.e. the analogue of a predicate in RDF) comes from prepositions and 

verbs, is extracted automatically from natural language, and describes the inter-

relation of participants within a single subunit (i.e. phrase) of a sentence. SPF roles 

are not assigned a priori by a person, but instead all naturally occurring prepositions 

and verbs are mapped automatically to a finite set of roles. Roles and participants 

reflexively determine each other’s word sense. The SPF functional scope is a single 

natural language sentence. RDF is a constructed prescriptive language that is not natu-

rally occurring, but has been devised and imposed (i.e., prescribed) by W3C commit-

tees. RDF/OWL operates not within documents, as is the case with SPF, but across 

documents. Each RDF triple element (subject/predicate/object) links to other triples 

which themselves link to more triples. These strongly interlinked datasets are often 

referred to as “linked data” [18] or “web of data”, and the links go across web pages, 

blogs, web sites, countries, etc. This interlinking constitutes the Semantic Web, and 

creates essentially a web universe parallel to the web of HTML/XML documents. 

Linguistic meaning. In SPS, word meaning is determined by differences a word has 

with other words in an internal ontology; in Semantic Web, by an extra-linguistic 



50  Joseph Leone and Dong-Guk Shin 

 

component (i.e., an annotation); and in the bag-of-words model, by statistics collected 

from a large sample of text in which the word occurs. 

SPS function vs SW function. One key difference between Semantic Web and SPS 

is the granularity in encoding semantics and consequently the way encoded semantics 

is used in web searching. RDF/OWL cannot be easily used to represent the meaning 

(i.e., a computable representation) of a single arbitrary natural language (NL) sen-

tence within a document. If RDF/OWL were employed to perform the SPS function 

(i.e., express a NL sentence in a computable form and process the computable form) 

every word in a NL sentence would have to be annotated with metadata to express the 

sentence in a form computable by a Semantic Web based process. Moreover, to pro-

cess the RDF/OWL sentence representation, SWRL [17] would also be needed be-

cause OWL’s set of relational properties does not cover the full range of expressive 

possibilities for object relationships that can exist in natural language. The number of 

object relationships in natural language is limited only by human imagination. In 

summary, annotating every word in every sentence that potentially exists in the web 

would be both impractical and unwise. 

Search Query & Data Aggregation. For the search query, "list all heads of state of 

EU countries", adopted from [19], SPS will find a document containing the query 

phrase or a semantically equivalent variation of the query phrase. A Semantic Web 

based search engine instead, according to the vision of SW, will integrate information 

from multiple sources: a list of EU member states from europa.eu with a list of head 

of state by country from rulers.org to produce a list of heads of state of EU countries. 

SPS unlike SW does not draw from world/background knowledge beyond the context 

of the sentence it is processing and the ontology words that sentence terms point to. 

SW systems with SPS-like architecture, purpose, and function. GoWeb [11] is a 

semantic web based system that is most similar in architecture and function to SPS. 

The purpose of GoWeb is to answer questions in the biomedical domain. The purpose 

of SPS is general information retrieval. GoWeb, like SPS, relies on a classical search 

engine (Yahoo). In GoWeb a user's input query is submitted to Yahoo, which returns 

a list of web document textual summaries, called snippets. GoWeb then uses entity 

recognition techniques to map concepts from ontological background knowledge (i.e. 

GeneOntology [20] and MeSH [21]) to the snippets. The snippets are annotated with 

background knowledge concepts. The annotation information is used to induce a tree 

representation, and to rank the top background knowledge concepts involved in the 

query. The top concepts provide the query answer.  

GoWeb has some of the elements of SPS: an external classical search engine, a tree 

representation of knowledge, and ranking results with respect to the user's query. 

However, GoWeb differs with SPS in that in SPS the ontology is underpinned by a 

static permanent tree representation; and therefore, creating supplementary data struc-

ture like snippets annotation would not be needed, as the ontological category of 

snippet sentence elements is identifiable using the SPS ontology. 

A concrete example from [11] illustrates this point and also illustrates how SPS 

equipped with a text summarization facility (not discussed in this article due to space 

limitation) can produce the same/better results than GoWeb. If a user query is "Which 

diseases are associated with wnt signaling?" and retrieved documents contain state-

ments such as “wnt signalling is linked to cancer”, then SPS can easily answer the 

user's query by first examining the ontology and discovering that "linked" and "asso-



A Phrase-based Ontology Enabled Semantic Processing System   51 

 

ciated" are synonyms and "cancer" is a subtype of "disease"; and then identify via the 

projection operation that "wnt signaling" is a transition phrase between two distinct 

sentences (i.e. the two sentences can be canonically strung together). Sections 4.2, 

3.5.1, 4.3, and 3.7.4 explicitly describe how such processes can be carried out. Some 

details of text summarization are provided in VisuText [12], an SPS spinoff system. 

3 System Architecture 

Fig. 1 shows the four main parts (interface, retrieval subsystem, auto-learn subsystem, 

relevance computation subsystem) of the SPS architecture and their internal compo-

nents. Each SPS architecture component, except NL Parser, is implemented in Lisp 

and the core technology that underpins SPS, called SP form, is a computable internal 

knowledge representation expressed in Lisp notation. SP form is inspired by the se-

mantics and logical foundation of Conceptual Graph (CG) [22, 23]. However, an SP 

form looks very different from conceptual graph interchange form (CGIF) and only 

superficially resembles CG linear form. Moreover, many elements from CG’s logical 

foundation (e.g., schematic cluster, prototypes, context, type definitions, aggregation, 

etc.) are not used. Nonetheless, SPS uses some CG nomenclature (e.g., Knowledge 

Lattice, graph, subgraph, and projection) since there is great similarity at the abstract 

level between CG elements and SPS elements. In this section we briefly describe SPS 

components. A more detailed description can be found in [2].  

 

 

Fig. 1. Semantic Processing System (SPS) Architecture 



52  Joseph Leone and Dong-Guk Shin 

 

3.1 SP Form 

SP form [2] is the internal knowledge representation formalism used by SPS. An SP 

form expresses a sentence lexical structure in a computable format. A sentence con-

sists of multiple phrases/clauses. Each phrase/clause is composed of syntactic and 

semantic elements. Syntactic elements, i.e. subject, verb, object, complement, adverb, 

etc. are participants in the meaning of a clause. Semantic elements, i.e. agent, instru-

ment, affected, etc. are roles participants play. Each phrase/clause is encoded in SP 

form as a triple comprising a role and two participants. 

(<role> (<direction1> <participant1>) (<direction2> <participant2>)) 

The collection of such phrases (i.e. SP forms) constitutes a sentence. Table 3 shows 

the SP form syntax. The direction symbol  that points away from the role is read as 

“is”, and the direction symbol  that points to the role is read as “of”. For example, 

(agent ( activate) ( chemicals)) is read as “agent of activate is chemicals”. 

 

Table 3. SP Form Syntax 

<sentence> : ( <phrase>+ ) 
<phrase> : ( <role> <participant> <participant> ) 
<role> : function word (e.g., determiner, adverb, or preposition) that clarifies 

relationships between concepts 
e.g., color, agent, location, obj, etc., i.e., conceptual relation 

<participant> : ( <direction><kernel> ) 
<direction> :  |  
<kernel> : <content> | ( <content> <referent> ) 
<content> : content word (e.g., noun, adjective, or verb) from catalog of conceptual 

types, e.g., dog, train, etc., i.e., concept 
<referent> : ε | <individual> | <set> | <reference> | <measure> | <quantifier> 
<individual> : a proper noun e.g., Snoppy, Clifford, Emma, etc. 
<set> : ( <individual>* ) 
<reference> : $ 
<measure> : @<number> 
<number> : integer or floating point number 
<quantifier> : @every | @many | @no 

 

Participants could have a referent field.  Table 2 shows examples of participant 

referent field types, referent values, and their representation syntax in SP form.  Table 

4 shows a natural language sentence expressed in SP form. Note that the sentence has 

three phrases. 

For completeness Table 2 lists more referent types than are supported by SPS. SPS 

does not support counted set, set reference, universal plural, and fuzzy plural. These 

referent types express the exactness and granularity of meaning that is un-necessary 

for computing relevance. Also, for the sake of improving readability, in the examples 

that follow, the content is shown un-stemmed and the referent is omitted (e.g., “recep-

tors” instead of “(receptor (*))”). 



A Phrase-based Ontology Enabled Semantic Processing System   53 

 

3.2 NL Parser: Stanford typed dependencies 

NL Parser implements the Stanford typed dependency (SD) [24] parser. The SD par-

ser represents sentence grammatical relationships as typed dependency relations, i.e., 

triples of a relation between pairs of words, such as “the subject of promote is recep-

tors” in the sentence “Receptors promote chemicals in the cytoplasm”. Each sentence 

word (except head of sentence) is the dependent of one other word. The dependencies 

are represented as relation_name (<governor>, <dependent>). All are binary rela-

tions: grammatical relation holds between a governor and a dependent. 

 

Table 4. Parser dependency output and SP Form 

 
 

The representation, as triples of a relation between pairs of words, is well suited 

for mapping SD parser output to SP forms. Table 4 shows an SD parse of the sentence 

“Receptors promote chemicals in the cytoplasm”. The parse output, i.e. the syntax tree 

(not shown) and the SD dependencies (left column), is mapped to SP forms. 

3.3 Crowd-Sourced Ontology 

Systems built using a knowledge-engineered approach suffer from multiple disad-

vantages. They require much labor-intensive, burdensome, manual work from a 

knowledge engineer in creating the ontology (i.e. explicitly defining every concept to 

be represented). The few general-purpose content languages that have been developed 

[25, 26] are usually bloated and unlikely to capture the intricacies of every possible 

domain. 

In SPS, this shortcoming is addressed by having end users construct the 

Knowledge Lattice (KL) collaboratively. We consider this model is very suitable for 

scientific literature mining like biomedicine because scientific knowledge is too vast 

for one person or a small group of scientists to curate all the known facts. A base 

Knowledge Lattice is initially built from words harvested from online resources such 

as dictionaries [27], encyclopedias [28] and UMLS [29]. Users then expand and up-

date the base KL by adding new words or changing the relation of existing words. 

The Knowledge Lattice resides on a central server and is accessible and modifiable by 

the Interactive Learning Component (ILC) of every SPS instance. The ILC can be a 

teachable system [30, 31] that acquires knowledge through dialog, and is responsible 

for maintaining and extending the knowledge lattice. Fig. 2 shows a Knowledge Lat-

tice fragment and Table 5 the corresponding lattice’s computational representation. 



54  Joseph Leone and Dong-Guk Shin 

 

 

Fig. 2. Knowledge Lattice Fragment 

 

Table 5. Knowledge Lattice Internal Representation 

Word Supertype Subtype Synonyms 

bacteria () (bacillus) () 

unicellular () (clostridium) (single-cell) 

protein (compound) (toxin) (enzyme) 

toxin (protein) (clostridium cucurbita-

cin) 

(hemotoxin phototoxin 

saxitoxin mycotoxin) 

compound ( ) (protein cucurbitacin 

flavonoids hemslecin 

glycoside) 

(mix amalgam composite 

complex blend combina-

tion) 

clostridium (unicellular bacillus 

toxin) 

(tetani difficile 

perfringens botulinum ) 

( ) 

Interactive Learning Component - Learning by Being Told. When SPS encounters 

a word not present in the Knowledge Lattice, SPS’ Interactive Learning Component 

asks the user the position of the word in relation to other words in the lattice, and the 

word’s synonyms if these are not available from a digital dictionary. Users are ex-

pected to indicate the position of the word in relation to other words. Updating the 

Knowledge Lattice may trigger other recursive Knowledge Lattice updates. The small 

incremental contributions from SPS’ global population of users are to allow the 

Knowledge Lattice to be built quickly.  

The ILC directs the user according to the following algorithm: 

 



A Phrase-based Ontology Enabled Semantic Processing System   55 

 

1. 

2. 

3. 

4. 

5. 

6. 

User is asked to add <word> to KL 

User chooses from KL either a subtype or supertype of <word> 

if subtype or supertype of <word> exists in KL 

   User places <word> in location appropriately 

else if both subtype and supertype do not exist in KL 

   User suggests a subtype or supertype for <word> 

The following example illustrates how a user would update the KL shown in Fig. 

2. The user is asked to add “hemoglobin” to the KL. The user chooses a word in the 

KL that is a supertype or subtype of “hemoglobin”. The user chooses “protein” which 

is a supertype of “hemoglobin”. The user places “hemoglobin” below “protein” and 

draws an arc to “protein”. If the user were asked to add the word “rickettsia” to the 

KL, the user would not find a supertype or subtype of rickettsia in the KL. In this 

case, the user might suggest “bacteria” as a supertype of “rickettsia”. 

Learn Area. Whenever a user extends the KL with a new word, the extension is used 

by SPS to process the user’s query. However, the extension is not immediately incor-

porated into the KL or used for other queries; instead, the extension is stored in the 

Knowledge Lattice learn area (see Table 6). The learn area stores and counts the clas-

sifications of a particular word. The count (i.e., freq) is used to determine which clas-

sifications have the highest consensus. When a particular word has been classified 

100 times, its highest frequency classifications are incorporated into the KL. 

Table 6. Knowledge Lattice Learn Area 

word freq classification 

tetani 25 clostridium – tetani -  

tetani 2  - tetani – tick 

tetani 3  - tetani - 

tetani 65 bacteria – tetani -  

tetani 5 protein – tetani -  

protein 14 compound – protein -  

bacteria 7  - bacteria -  

hemoglobin 1 protein – hemoglobin -  

rickettsia 1 bacteria – rickettsia -  

 

Table 6 shows user classifications of the words “tetani”, “protein”, “bacteria”, “he-

moglobin”, and “rickettsia”. Table 6 shows that “tetani” was classified 100 times, 

“protein” 14 times, “bacteria” 7 times, “hemoglobin” once, and “rickettsia” once. The 

figure also shows that “tetani” received five distinct classifications. Classifications are 

encoded as “<supertype> - <word classified> - <subtype>”. The symbols T and  

are pre-defined KL elements: the universal type T represents anything, and the absurd 

type  is a proper subtype of every other type. All other elements are a proper subtype 

of the universal type. 

ILC supports the operations freq (<word>), which returns the number of times 

<word> has been classified and distinct (<word>), which returns the number of dis-



56  Joseph Leone and Dong-Guk Shin 

 

tinct classifications of <word>. When freq (<word>) is at least 100, the top ranked 

classifications of <word> are incorporated into the KL. In Table 6, the classifications 

“bacteria – tetani - ” and “clostridium – tetani - ” of “tetani” are incorporated into 

the KL because they are the highest ranked “tetani” classifications. 

3.4 Auto-Learn 

In addition to interactive learning, SPS also employs auto-learn, a non-interactive 

learning mechanism. Auto-learn, which consisting of contextual-inference and online-

lookup, is always attempted before interactive learning. 

Contextual-inference (CI) attempts to infer the meaning (i.e. position of word in 

the Knowledge Lattice in relation to other words) of an unknown word from the con-

text of the word in a sentence. Contextual inference mimics the learning that occurs 

when children build vocabulary by reading. As children read they infer the meaning 

of unknown words from the context of the unknown word context present in the sen-

tence, without having to look-up the word in a dictionary. 

For example, when SPS encounters (i.e. reads) the following sentences: "Wood-

ward and his 17 year old sister Deanne, both of Niagara Falls, New York set out that 

day on a harmless boat ride on the upper Niagara River with family friend James 

Honeycutt. John Hayes, age 44 years, a truck driver from Voxhall, New Jersey was 

visiting Terrapin Point on Goat Island when he saw Deanne in the water. " [32] 

SPS’ CI infers that "Niagara Falls" is both a city and waterfall in "New York", 

"Niagara" is a "River", "Honeycutt" and "Hayes" are a surnames, "Voxhall" is in 

"New Jersey", "Goat Island" is an "Island", and "Terrapin Point" is a place in "Goat 

Island". 

CI discovers these facts by consulting both the KL and the dependency parse. From 

the dependency parse, CI is able to link a known fact with an un-known one, and 

update the KL with the new discovered facts. Note that CI determines word related-

ness (i.e. linkage) from word dependency and not word proximity (as is often the case 

in machine learning approaches). CI also considers four types of modifier dependen-

cies: adjectival, noun compound, appositional, and possession. The relations these 

word dependencies signify parallel the relational structure of the KL. 

In the KL, edges represent variations in meaning between the two words that the 

edge connects. Edges capture three types of word relations: category-category (e.g. 

“vehicle” and “aircraft”), category-instance (e.g. “aircraft” and “Dreamliner”), and 

instance-instance (e.g. “Dublin” and “Ireland”). Category-category relations are gen-

erally found by interacting with the user or harvesting the relation from online dic-

tionaries [27]. Category-instance and instance-instance relations are inferred from 

information encountered by SPS or by looking up the information in an online ency-

clopedia [28]. Note that instance-instance encompasses many types of relations such 

as “part of”, “parts”, “synonym”, etc. 

Contextual-inference provides three benefits: lessens the need for user interaction, 

enables “reading” online resources to extract new word meaning (i.e. relation of one 

word to another), and allows sentence in situ meaning extraction. These benefits con-

tribute to the automatic construction of the KL. 



A Phrase-based Ontology Enabled Semantic Processing System   57 

 

Sentence in situ meaning extraction is particularly important in lessening user in-

teraction because as SPS “reads” it may encounter new words that will not be in any 

dictionary, and their meaning (i.e. position in the Knowledge Lattice) may be known 

only to a person or can be contextually inferred from the sentence in which the word 

occurs. For example, in the sentence “Rufus is the second dog to die at Petsmart 

grooming in six months”, “Petsmart”, which is probably a dog beauty salon, will not 

be in any dictionary and its meaning will be known only to people who have 

knowledge of “Petsmart”. 

Online-lookup applies contextual-inference to online resources [28] to discover the 

meaning of unknown words. 

3.5 Knowledge Lattice 

The Knowledge Lattice stores no word definitions but only the subtype / super-type 

relations of a word and the word’s synonyms. One key architectural decision of SPS 

is that computing relevance would not require use of “electronic” word definitions. In 

SPS, the relation of words contained within a phrase (e.g. role of agent, obj, etc.), the 

synonyms of a word (e.g. protein, enzyme), and the subtype / super-type relation of a 

query word to a target word (e.g. toxin, recin) are sufficient to determine if a target 

phrase matches (i.e. is relevant) a query phrase. 

Knowledge Lattice Operations. A lattice [22] is a structure consisting of a set L (of 

type labels), a partial ordering , and two dyadic operators  and . If a and b are 

elements of L, ab is the maximal common subtype of a and b, and ab is the mini-

mal common supertype of a and b. For any a, b, and c in L, these operators satisfy the 

following axioms: 

 aba and abb.  

 If c is any element of L for which ca and cb, then cab.  

 aab and bab.  

 If c is any element of L for which ac and bc, then abc. 

Below are examples of Knowledge Lattice operations applied on the lattice frag-

ment shown in Fig. 2. 

  subtype 

e.g. [bacillus]  [bacteria] 

  minimal common supertype i.e. least upper bound. 

e.g. [difficile]  [tetani] = [clostridium] 

[difficile] and [tetani] have many common supertypes including [unicellular], 

[bacillus], and [toxin]. However, [clostridium] is the minimal common supertype. 

  maximal common subtype i.e. greatest lower bound. 

e.g. [bacillus]  [toxin] = [clostridium] 

[bacillus] and [toxin] have many common subtypes including [difficile], [tetani], 

[perfringens], etc. However, [clostridium] is the greatest common subtype. 



58  Joseph Leone and Dong-Guk Shin 

 

3.6 Keyword Extract & Expand 

Keyword Extract creates a keyword query for a traditional search engine (e.g., 

Google). Each keyword of the natural language query is augmented with additional 

keywords that account for synonymy and with its maximal common subtypes and 

minimal common supertypes. The data source of these additional keywords is the 

Knowledge Lattice. For example, if the natural language query is “Compounds inter-

fering with actin function.” and the Knowledge Lattice is as shown in Table 7, then the 

generated keyword query contains all the synonyms, supertypes, and subtypes of each 

word in the natural language query. E.g., (or “compound flavonoids cucurbitacin 

hemslecin glycoside blend mixture amalgam interfere hinder interact interlope meddle 

disrupt obstruct impede block actin protein filament function duty role purpose activi-

ty operate party”). 

 

Table 7. Knowledge Lattice - compound, interfere, actin, function 

Word Supertype Subtype Synonym 

compound ( ) (flavonoids 

cucurbitacin 

hemslecin 

glycoside) 

(blend mixture amalgam) 

interfere (hinder 

interact ) 

(interlope 

meddle) 

(disrupt obstruct impede block) 

actin (protein) (filament)  

function   (duty role purpose activity operate party) 

 

3.7 Semantic Matcher 

Semantic Matcher (SM) determines which retrieved pages are relevant to the user’s 

query. The inputs to SM are the user’s query and the retrieved pages. SM carries out 

the relevance computation by applying the restriction, projection, maximal-common-

subgraph, and match operations against the retrieved pages. These operations consult 

the Knowledge Lattice. 

Restriction. Restriction transforms a concept into a more specific type. It replaces  

 a more general concept with a more specific one, e.g. (bacillus) & (tetani) => tetani 

 a generic referent with an individual referent e.g. (protein) & (protein myosin) => 

(protein myosin) 

 individual/set-referent and set-referent with their union e.g. (protein myosin) & 

(protein (formin profilin)) => (protein (myosin formin profilin)) 

 two individuals with their union e.g. (protein profilin) & (protein myosin)) => 

(protein (profilin myosin)) 



A Phrase-based Ontology Enabled Semantic Processing System   59 

 

Maximal-Common-Subgraph. Maximal-common-subgraph finds the largest sub-

graph that two graphs u and v have in common. For example, in Table 8 

 

Table 8. Maximal-common-subgraph example 

u v 

(type ( (protein ApoE)) ( Apolipoprotein)) 
(location ( (protein ApoE)) ( brain)) 
 

(agent ( protein) ( distribute)) 
(obj ( distribute) ( lipids)) 
(type ( protein) ( Apolipoprotein)) 

The common subgraph is (type ( (protein ApoE)) ( Apolipoprotein)) the gener-
ic referent (protein) is restricted to the individual referent (protein ApoE). 

Match.  Two graphs u and v match if there is a subgraph u’ of u such that 

 roles are the same in v and u’ 

 pairs of corresponding participants in v and u’ have a maximal common subtype 
 

Table 9. Match example 

u v 

(agent ( interfere) ( flavonoids)) 
(type ( scaffold) ( actin)) 

(obj ( interfere) ( scaffold)) 

(agent ( interfere) ( compound)) 
(obj ( interfere) ( assembly)) 

For example, in Table 9 knowledge lattice operations indicate that (compound) is a 
supertype of (flavonoids), and (assembly) is a supertype of (scaffold); therefore, the 
graphs u and v match. 

Projection. Projection maps a general graph v to a more specialized graph u. The 

mapping is a subgraph of u, called a projection of v in u. A projection determines if a 

graph is a subgraph of another graph.  For example, in Table 10 adapted from [33], 

 

Table 10. Projection example 

u v 
(child ( (man John)) ( (girl Mary))) 
(child ( (man John)) ( (boy Bob))) 
(agent ( love) ( (boy Bob))) 
(obj ( love) ( (girl Mary))) 

(child ( person) ( person)) 

 
projection of v in u: 
  (child ( (man John)) ( (girl Mary))) 
  (child ( (man John)) ( (boy Bob))) 

Knowledge Lattice indicates that (person) is a super-type of (man), (boy), and 
(girl). 



60  Joseph Leone and Dong-Guk Shin 

 

The difference between projection and match is that in match either graph can be 
specific or general; in projection, a more general graph is used to find a more specific 
one. 

4 Keyword Search vs. Phrase Search 

One specific application of SPS has been developing a phrase search mechanism for 

text mining of biomedical literature. Text mining of biomedical literature is a trendy 

topic in bioinformatics and we illustrate how SPS can improve relevancy in this ap-

plication. 

4.1 Simple Match 

Table 11 shows two sentences from two different web pages [34]. These two pages are 

polysemous at the phrase level. 

 

Table 11. Example of simple match 

Page 1 We then present evidence that Sip1, Sip2, and Gal83 each interact independently 
with both Snf1 and Snf4 via distinct domains. 

Page 2 The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with 
Snf4 and suppress the snf1 and snf4 mutations in yeast. 

Query “interact with snf1” 

A Google search against these pages with the query “interact with snf1” returns 

both pages 1 and 2 because all the search query keywords appear in both pages. But a 

SPS search returns only page 1 because the search query phrase occurs in page 1, but 

not in page 2. This difference is the result of using the Semantic Matcher, which uti-

lizes the Knowledge Lattice and Semantic Matcher operations to compute the rele-

vance of page 2 to the user’s query.  
Table 12 shows the SP form of each page and the query. The search query in SP 

form is (obj ( interact) ( (protein Snf1))). The SP form search query matches the 
page 1 phrase (obj ( interact) ( (protein (Snf1 Snf4)))) but does not match any SP 
forms in page 2. There is a page 2 phrase, (obj ( interact) ( (protein Snf4))), simi-
lar to the search query; but the page 2 phrase contains a different protein than the 
search query protein.  
 
 
 
 
 
 
 
 
 
 
 



A Phrase-based Ontology Enabled Semantic Processing System   61 

 

Table 12. SP Form of simple match example 

Page 1 SP form: Page 2 SP form: 

(agent ( present) ( (person We))) 

(obj ( present) ( $evidence)) 

 

 

$evidence: 

(agent ( interact) ( (protein (Sip1 Sip2 

Gal83)))) 

(obj ( interact) ( (protein (Snf1 Snf4)))) 

(manner ( interact) ( independent)) 

(instr ( interact) ( domain)) 

(type ( domain) ( distinct)) 

 
1SnRKs [Snf1 (sucrose non-fermenting-1)-

related protein kinases] 

(type ( subunits) ( catalytic)) 

(agent ( interact) ( subunits)) 

 

(kind ( subunits) ( SnRKs1)) 

(type ( SnRKs) ( (plant Arabidopsis))) 

(equi ( SnRKs) ( (protein (AKIN10 

AKIN11)))) 

 

(obj ( interact) ( (protein Snf4))) 

 

(agent ( suppress) ( subunits)) 

(obj ( suppress) ( mutation)) 

(type ( mutation) ((protein (snf1 snf4)))) 

(loc ( suppress) ( yeast)) 

Query SP form:  (obj ( interact) ( (protein Snf1))) 

4.2 Match using synonyms 

In the following example (see Table 13) adopted from [35, 36], during the look phase 
the user query is expanded with “associate”, a synonym of “link”. And in the find 
phase semantic matching treats “link” and “associate” as equivalent (i.e. synonyms in 
KL). 
 

Table 13. Example of match using synonyms 

Page 1 Myosin is the most abundant protein in the human body. Many disorders and health 
related problems have been linked to faulty myosin. 

Page 2 Myosin associated proteins. 

Query “proteins linked to myosin” 

 
A Google search against these pages with the query “proteins linked to myosin” re-

turns both page 1 and 2 because all the search query keywords appear in page 1, and 
two of the search query keywords appear in page 2. But an SPS search returns only 
page 2 because the search query phrase occurs in page 2, but not page 1. In page 1 it is 
not a protein that is linked to myosin, but disorders and health problems. 

The SP forms of the query and pages are shown in Table 14. 
 
 
 
 
 
 
 
 



62  Joseph Leone and Dong-Guk Shin 

 

Table 14. SP Form of match using synonyms example 

Page 1 SP form: Page 2 SP form: 

((agent ( be) ( (protein Myosin))) 

(manner ( abundant) ( (quantity most))) 

(type ( protein) ( abundant)) 

(type ( body) ( human)) 

(loc ( protein) ( body))) 

 

((type ( disorder) ( (quantity many))) 

(agent ( link) ( disorder)) 

(type ( problem) ( health)) 

(agent ( link) ( problem)) 

(type ( myosin) ( faulty)) 

(obj ( link) ( (protein myosin)))) 

(agent ( associate) ( (protein Myosin))) 

(obj ( associate) ( (protein (*)))) 

Query SP form: (agent ( link) ( protein))  

(obj ( link) ( (protein myosin))) 

No query phrase matches any page 1 first sentence phrases. The page 1 second sen-

tence phrases only match one query phrase, i.e. (obj ( link) ( (protein myosin))) 

matches (obj ( link) ( (protein myosin))). However for the page to be accepted, 

both query phrases must match phrases in the target sentence. The query phrase, 

(agent ( link) ( protein)), does not match any page 1 second sentence phrase. 

Therefore, no sentence in page 1 matches the query phrase. 
The query phrases match all page 2 phrases. (agent ( link) ( protein)) matches 

(agent ( associate) ( (protein Myosin))) because the Semantic Matcher recognizes 
by consulting the KL that “link” and “associate” are equivalent. (obj ( link) ( (pro-
tein myosin))) matches (obj ( associate) ( (protein (*)))) because likewise “link” 
and “associate” are equivalent. 

4.3 Match using subtype / supertype 

The following example (see Table 15) adopted from [37, 38] illustrates semantic 

matching that uses both synonyms and subtype.  

 

Table 15. Example of match using subtype / supertype  

Page 1 Flavonoids interfere with actin functions in the cytoplasm and the nucleus. 

Page 2 Actin filaments were disrupted by Clostridium botulinum C2 toxin. 

Query “Compounds interfering with actin function.” 

The KL fragment (see Table 16) used by semantic matcher contains specific domain 

knowledge 

 

 

 



A Phrase-based Ontology Enabled Semantic Processing System   63 

 

Table 16. KL fragment of compound and interfere 

Word Supertype Subtype Synonym 

compound ( ) (flavonoids 

cucurbitacin 

hemslecin gly-

coside) 

(blend mixture amalgam) 

interfere () ( ) (disrupt obstruct impede block) 

A Google search against the pages with the query “compounds interfering with actin 

function” returns page 1 at the top of the result list because it contains three of the 

four keywords, and also page 2 further down the result list because it contains one of 

the keywords. SPS search instead returns only page 1 because the search query phrase 

matches the page 1 sentence. The query phrase does not match the page 2 sentence, 

although “interfere” and “disrupt” are synonyms according to the KL, because “Clos-

tridium” is not a kind of “compound”.  

 

The SP forms of the query and pages are shown in Table 17. 

 

Table 17. SP Form of match using subtype / supertype example 

Page 1 SP form: Page 2 SP form: 

(agent ( interfere) ( flavonoids)) 

(type ( function) ( actin)) 

(obj ( interfere) ( function)) 

(loc ( function) ( cytoplasm)) 

(loc ( function) ( nucleus)) 

(type ( filaments) ( actin)) 

(obj ( disrupt) ( filaments)) 

(type ( toxin) ( Clostridium)) 

(type ( toxin) ( botulinum)) 

(type ( toxin) ( C2)) 

(agent ( disrupt) ( toxin)) 

Query SP form: (agent ( interfere) ( compound)) 

(type ( function) ( actin)) 

(obj ( interfere) ( function)) 

For page 1 the query phrase (agent ( interfere) ( compound)) matches (agent ( 

interfere) ( flavonoids)) because according to the KL “flavonoids” is a subtype of 

“compound”. The other query phrases match simply against the page 1 phrases. For 

page 2 the query phrase (agent ( interfere) ( compound)) does not match (agent 

( disrupt) ( toxin)) because although “interfere” and “disrupt” are synonyms, 

none of the “toxin” types is an immediate supertype or subtype of “compound”. 

5 SPS Performance Evaluation 

5.1 Evaluation Measures 

Two measures, recall and precision, are considered for SPS performance evaluation.  

 



64  Joseph Leone and Dong-Guk Shin 

 

   (1) 

 

 

   (2) 

 

Recall is the fraction of relevant documents that are retrieved from the collection of 

all relevant documents. Precision is the fraction of retrieved documents that are rele-

vant. Precision can be viewed as a measure of exactness, whereas recall is a measure 

of completeness.  

High recall suggests no document has been missed, but also that the results may 

contain many useless documents (which implies low precision). High precision sug-

gests everything returned is a relevant result, but also that not all relevant items 

(which implies low recall) could be found. 

Every SPS search is a pipeline of two separate searches: a keyword search and a 

cognitive search. Keyword search uses keywords and an external traditional search 

engine (e.g. Google, Bing, HotBot, AltaVista, DuckDuckGo, BananaSlug, etc.). Cog-

nitive search uses phrases (i.e. SP forms) and the Semantic Matcher. From here on, 

we refer to the traditional search engine that is used in conjunction with SPS as the 

“SPS-pair”. For SPS, in the worst-case (i.e. no keyword expansion) recall should be 

identical to recall of traditional keyword search. In all other cases, recall should be 

better than recall of traditional keyword search because the traditional search (i.e. 1st 

step in pipeline) will be conducted with a greater number of keywords that are derived 

from synonyms and hypo/hypernyms. 

Recall, however, cannot be used as an evaluation measure because the size of the 

document collection (i.e. Internet) is unknown. Therefore, only the precision measure 

is used in evaluating SPS performance. 

Precision takes all retrieved documents into account, but it can also be evaluated at 

a given cut-off rank, considering only the topmost results returned by the system, i.e., 

both SPS and its traditional search engine pair. This measure is called precision at n 

or P@n. For our purpose n=5.  

5.2 Relevance Types 

Precision is assessed according to three types of relevance: Google relevance, SPS 

relevance, or human relevance. 

For Google, a page is relevant if any of the keywords (i.e. query sentence words) 

appear within the page and other pages deemed “authoritative” point to the page. For 

SPS, a page is relevant if it contains a sentence in which all (or a subset) of the query 

phrases match the target sentence phrases. 

Human relevance is similar to SPS relevance but involves natural language and is 

performed by a person to assess a test run. The number of natural language query 

phrases matched in the target sentence determines human relevance. For example, 



recall 
number of relevant items retrieved

number of relevant items in collection



precision 
number of relevant items retrieved

total number of items retrieved



A Phrase-based Ontology Enabled Semantic Processing System   65 

 

when n=2 (i.e. the number of query phrases to match) a page is relevant if it contains 

a sentence which consists of at least two of the query phrases.  

5.3 Evaluation Methodology 

A single identical query is presented to both SPS and a traditional search engine (e.g. 

Google, Bing, Yahoo, and Netscape). The top five results of SPS and the comparison 

search engine are assessed for precision, which is done manually by a person.  

One concern is whether the comparison search engine should be different or the 

same as the SPS-pair? We consider it should be the same because if it is different 

there will be no way to gauge what weight keyword search and cognitive search re-

spectively contribute to the better performance. If it is different all that could be said 

is that SPS-Google is better than AltaVista. However, we would not know whether it 

is the cognitive component (i.e. SPS) or keyword component (i.e. Google) that makes 

the duo better. 

6 Empirical Results 

6.1 Experimental Setup 

The SPS system shown in Fig. 1 was implemented using Allegro CL Professional 

Edition 9.0. The two GUIs, “Look-Find” and “Ontology”, were implemented only as 

command line interfaces instead of graphical interfaces. The Knowledge Lattice was 

populated with 105,898 general knowledge words harvested from online sources [27, 

28]. Seven different SPS configuration settings likely to yield the highest precision 

were selected. Ten queries were created randomly and run using both SPS-Google 

and Google alone. The top five results (i.e. P@5) of each run of both SPS-Google and 

Google alone were evaluated for precision.  

6.2 SPS Configuration Settings 

Table 18 shows SPS configuration settings broken into three categories, and the time 

of their application. 

Table 18. SPS Configuration Settings 

time setting applied during … 

parse 1. preposition discernment 

2. phrasal verb 

3. multi-word nouns 

parse of natural language into SP form 

search/look 4. query keyword expansion 

5. result set maximum size 

search query construction 

match/find 6. subtype-supertype depth 

7. matched phrases floor 

Semantic Matching 



66  Joseph Leone and Dong-Guk Shin 

 

Adjustment of these settings causes SPS to produce results of varying/different 

precision. Note that for consistency in encoding into SP Form, parse time settings 

once established must be the same for both the query parse and the target pages parse. 

On the other hand, search time and match time settings, can be changed on the fly 

because they do not affect the SP Form encoding. 

Preposition discernment. One prerequisite to phrase parsing is handling preposi-

tions. In SPS, prepositions map into SP phrase roles (see Table 3 SP form syntax). A 

single preposition (e.g. to, by, of, in, on, at, as, for, through, between, from, against, 

into, with, without, before, after, until, during, according, etc.) can express/denote 

multiple meanings (e.g. location, place, time, purpose, measure, function, etc.) de-

pending on context.  

As an example, in the following phrases the preposition “for” could denote, de-

pending on context, various meanings (see Table 19) 

 

Table 19. Possible meanings of the "for" preposition 

Phrase Role (specialized) 

“therapies for hypertension” affect 

“searching for enlightenment” purpose 

“tools for making frames” function 

“leaving for Boston” location 

“in prison for 12 years” time 

“baby crawled for 30 yards” measure 

“failed for the third time" series 

The “preposition discernment” setting determines whether the phrase role should be 

general or should be more specialized with the meaning determined by context. By 

examining the phrase context and the broader meaning of the governing word and its 

dependent word, a more precise role between two participants would be inferable. For 

example, the parse of “a book on careers” could be encoded either of the two (see 

Table 20). 

 

Table 20. Example of general / specialized phrase role 

(on ( book-2) ( careers-4)) general 

(topic ( book-2) ( careers-4)) specialized 

Table 21 shows sample prepositions and the most common category of meaning 

that each preposition can have. 

 

 



A Phrase-based Ontology Enabled Semantic Processing System   67 

 

 

Table 21. Common meanings of sample prepositions 

 to by of in on at as for from 

time  x x x x x x x x 

location x x x  x x  x x 

measure  x x     x  

relation x  x     x  

medium    x x    x 

cause   x      x 

target     x x    

condition    x  x    

purpose x       x  

affect x       x  

scale      x   x 

function       x x  

In addition to the above meanings, other less common preposition meanings are 

available and some are listed in Table 22.  

Table 22. Less common meanings of sample prepositions 

to destination, attached 

by instrument, author, dimension, parameter, deadline, pedigree 

of part, direction, kind, substance 

in enclosure, quality, occupation 

on topic 

at means 

as character 

for occasion 

from source 

Phrasal Verbs. A phrasal verb is a multi-word phrase that consists of a verb and 

some other element, but is treated as a single word with a distinct meaning. For ex-

ample, “throw-up”, “break-down”, “rolled-out”, “turned-around”, etc. A new parse 

time setting is introduced, called “Phrasal Verbs”, and if “Phrasal Verbs” is set to 

“unitized”, then it indicates whether phrasal verbs should be treated as a single dis-

tinct unit or as separate words. 

Multi-Word Nouns. Multi-word nouns are nouns comprised of multiple words. For 

example, “Defense Advanced Research Projects Agency”, “Department of Defense”, 

“George Herbert Walker Bush Jr.”, “Ho Chi Minh City”, “Rio de Janeiro”, etc. Most 

multi-word nouns, except for person names, are best left indivisible. Note that multi-

word nouns are different from noun phrases, which are groups of words that function 



68  Joseph Leone and Dong-Guk Shin 

 

as a subject in a sentence. This setting indicates whether multi-word nouns will be 

treated as a single distinct unit or as separate words. 

Query Keyword Expansion. This setting indicates whether each natural language 

query keyword should be augmented with additional keywords that account for syn-

onymy and the keyword's proper subtypes and proper supertypes. Note that Google 

limits the number of query keywords to 32. Also, if many (i.e., > 6) keywords are 

presented or the keywords are in alphabetical order, or have similar spelling, Google 

retrieves word lists only, and ignores all other pages where those keywords might 

occur. For example, even when keyword root redundancy is eliminated (e.g. "care" 

"careful" "caring" "carefulness" => “care”) and keyword order is randomized, Google 

will still retrieve word lists. 

Result Set Maximum Size. This setting indicates the maximum number of result 

pages a conventional search engine (i.e. Google) should return. 

Subtype-Supertype Depth. Subtype-supertype depth indicates the number of KL 

levels a process may traverse to retrieve a subtype or supertype. One (of many) equal-

ity criterion is that two words are equal if they are subtypes or supertypes of each 

other. This setting allows equality to look beyond the proper subtypes or supertypes to 

an extended sub/super type. 

Matched Phrases Floor.  

This setting indicates the minimum number of phrases in the query that must match 

phrases in the target sentence for the sentence to be considered matched and subse-

quently, for the page containing the sentence to be a hit. The effect of this setting is to 

“throttle” precision. Lowering the setting’s value will result in more hits, but a lower 

precision.  

6.3 Query Creation - Random 

Queries are constructed using a random approach. Randomness is to assure that op-

erator bias (in favor of SPS) is not introduced in SPS evaluation. The random ap-

proach adheres to the following rules: 

1. Choose a word at random from the Unix system list of words, 

/usr/share/dict/words. Ten random numbers (one for each word) that fall in the 

range 1 and maximum number of words in the list are generated using  

                    jot -r 10 1 234936 

A word that corresponds to each generated number is selected. 

2. Look up the selected word in a dictionary that provides sample sentences contain-

ing the word. The following dictionaries, for example, could be used 

                   http://corpora.uni-leipzig.de 

http://corpora.uni-leipzig.de/


A Phrase-based Ontology Enabled Semantic Processing System   69 

 

                   http://sentence.yourdictionary.com/bony 

3. Use a sample sentence provided by the dictionary to construct a query. Human in-

volvement is required because composing a query is a human activity. 

4. Run the query using both SPS-Google and Google. 

5. Evaluate both runs for P@5. Note that using the Leipzig corpora to construct que-

ries provides an additional evaluation advantage. Since the corpora provide the 

URL of the page that contains the sentence, one knows a priori that at least an ac-

tual internet page should contain the query. 

 

The ten queries generated from the above procedure are shown in Table 23. 

Table 23. Natural language queries used in trials 

 Rand # Word Query 

q0 19141 bathing "Died in a bathing accident in 1978." 

q1 79613 greedy "Greedy corporate capitalists who don't care about 

the environment." 

q2 222998 untangle "Researchers agree that numbers can be hard to un-

tangle." 

q3 68245 fashion "People decorate their cows everywhere, but we call 

it a fashion show." 

q4 108311 ludicrous "Talk about anyone appointing the next United States 

Senator is ludicrous." 

q5 88004 huntsman "The largest huntsman spider has a leg span of 30 

centimetres." 

q6 171560 sacramental "Ashes are sacramental but not a sacrament." 

q7 232279 woodland "Green jays inhabit the riverine woodlands." 

q8 37622 clogger "The band and their clogger stopped by the studio." 

q9 232464 workhouse "Contemporary recipes suggest that workhouse gruel 

was substantial." 

Each of the above queries is run using both SPS-Google and Google. SPS-Google 

has been run multiple times with different choices of SPS configuration settings. 

6.4 Trials 

Prior to the actual trial runs, pre-trial runs can be carried out to determine desired 

values for the SPS settings. At maximal configurations, four of the SPS settings can 

take one of two possible values, one setting a value in the range 1 to 3, and the last 

setting values ranging from 1 to the number of phrases in the user query. The total 

number of possible combinations of settings for each query evaluated can be as big as 

24 * 3 * N, where N is the number of phrases in the user query. To reduce the com-

plexity, without compromising the trial results, one can choose only those settings 

that are likely to yield the highest precision. After multiple pre-trial runs we resorted 

to the following chosen setting values (see Table 24) in our computational analysis: 

http://sentence.yourdictionary.com/bony


70  Joseph Leone and Dong-Guk Shin 

 

 

Table 24. SPS Configuration Settings for Trials 

Configuration Setting Value 

Preposition Discernment no (i.e. more ambiguous general role used) 

Phrasal Verbs unitized (i.e. indivisible, treated as unit) 

Multi-Word Nouns unitized except person names 

Query Keyword Expansion no (because expansion may result in word lists) 

Result Set Maximum Size 40 pages 

Subtype-Supertype Depth level 1 only (i.e. proper subtype or supertype) 

Matched Phrases Floor varied from user query number of phrases to 1 

 

All trials have been run under these settings. 

Table 25. SPS Trials Result Data 

  Google SPS 

  rank count count 

 N n n-

1 

n-

2 

n-

3 

n-

4 

n n-

1 

n-

2 

n-

3 

n-

4 

n n-

1 

n-

2 

n-

3 

n-

4 

q0 3  10 23    1     3 20   

q1 5  33 5 5 5  1 1 1 1  1 4 16 24 

q2 4  12 2 2   1 2 2   1 4 10  

q3 9    26 24         2 4 

q4 5  5 5 5 2  1 1 1 4  1 1 10 18 

q5 7 36 36 6 1 1    3 4 1 2 7 21 30 

q6 2 24 3     1    2 6    

q7 4 9 1 1     1 3   1 4 16  

q8 5     1     2     5 

q9 5  1 1 1 1  3 3 3 3  12 12 13 26 

 

Table 25 shows the results of the runs of the ten queries (i.e. q0 – q9). The column 

headings are meant to represent their respective notions given below: 

 N is the number of phrases in the query.  

 rank is the position, from the top of the result list, of the first page hit. A hit is a 

page, human relevant to the query (i.e. page contains at least one sentence that 

matched the query). Rank is noted only for Google, because a relevant Google re-

sult page might appear anywhere within the set of result pages. SPS returns only 

pages that are hits; therefore, SPS rank will always be one. 

 n under rank is the position, within the result set, of the first hit from the top where 

all N phrases match. 

 n-1 under rank is the position, within the result set, of the first hit from the top 

where all n-1 phrases match. Similarly, for all the other “n-“ columns under rank.  

 count is the number of hits within the first 5 pages from the top. 



A Phrase-based Ontology Enabled Semantic Processing System   71 

 

 n under count is the number of hits within the first 5 pages from the top where all 

N phrases match.  

 n-1 under count is the number of hits within the first 5 pages from the top where all 

n-1 phrases match. Similarly, for all the other “n-“ columns under count. 

Trials – Comparative Results. Figures 3-9 show a graphical representation of Table 

25 data. 

 

 

Fig. 3. P@5 One phrase matched 

 

Fig. 4. P@5 Two phrases matched. 



72  Joseph Leone and Dong-Guk Shin 

 

 

 

Fig. 5. P@5 Three phrases matched. 

 

 

Fig. 6. P@5 Four phrases matched. 



A Phrase-based Ontology Enabled Semantic Processing System   73 

 

 

Fig. 7. P@5 Five phrases matched. 

 

Fig. 8. P@5 Six phrases matched. 



74  Joseph Leone and Dong-Guk Shin 

 

 

Fig. 9. P@5 Seven phrases matched. 

When n=1 (Fig. 3) Google and SPS are on an almost equal footing, their match 

atomic units are very similar, a keyword in Google and a single phrase in SPS. How-

ever, SPS still has an advantage over Google. 

With two phrases (Fig. 4), the precision of most queries is reduced. The reduction is 

most noticeable in queries that have approximately two phrases. Google precision is 

the most reduced in q7 and q4; q6 is dropped. For both Google and SPS, q8 is 

dropped. 

When n=3 (Fig. 5), matches are even more restricted. For both SPS and Google, q6 

is not considered and q0 is dropped. For SPS, q4 precision is substantially reduced. 

For Google, q3 precision is substantially reduced, and q7 is dropped. 

When n=4 (Fig. 6), q2 and q7 which are made up of four phrases, are dropped. SPS 

q1 and Google q3 precisions are reduced. 

When n > 4 (Figures 7-9), only SPS produces P@5, and the precision decreases 

considerably. With each increase in the number of phrases matched, precision is about 

halved. 

Trials – Hit Dispersion. For every trial Google returns 40 pages it considers relevant, 

ordered from most to least relevant. SPS examines the Google result set, and selects 

from the set those pages that are SPS relevant. Note that the pages examined by SPS 

are exactly the Google result set. This is because keywords, for the reasons cited in 

Section 6.2.4, are not expanded. In effect, SPS sifts through the Google result set to 

find the human relevant pages. The hit dispersion figures below show the dispersion 

of human relevant pages in the Google result set. 

 



A Phrase-based Ontology Enabled Semantic Processing System   75 

 

 

Fig. 10. Hit Dispersion (q0-q3) 

 

Fig. 11. Hit Dispersion (q4-q7) 



76  Joseph Leone and Dong-Guk Shin 

 

 

Fig. 12. Hit Dispersion (q8-q9) 

7 Discussion 

Table 25 and the graphs in Sec 6.4.1 and 6.4.2 show, for each query, the precision 

comparison between Google and SPS-Google, and the distribution of page hits in 

each method. From this data we can make the following observations. 

Matching all query phrases is too restrictive. When n=N only two (q5, q6) of the 

ten queries result in SPS hits (see Table 25). Out of 40 pages, SPS finds for q5 only 

one human relevant page and for q6 only two human relevant pages. At P@5 and 

n=N, Google does not retrieve any human relevant pages for any query. 

SPS precision increases as the Matched Phrases Floor (see Sec 6.2.7) decreases. 

For example, q6 which consists of two phrases (N=2), goes from a precision of 0.4 

when n=2 (Fig. 4) to 1.0 when n=1 (Fig. 3). Matched Phrases Floor is applicable to 

Google only for human relevance.  

The variance in the hit count between matching all query phrases and matching a 

subset of the query phrases is small for Google but quite large for SPS. For example, 

the variance between an n-1 count and n-4 count for Google is small; in fact the larg-

est variance is 3 in q4 (see Table 25). In SPS the variance is much greater, the largest 

variance is 29 in q5 (see Table 25).  

These differences in how hits are dispersed in the result sets of the two approaches 

are expected because in our opinion the Google approach is “sloppier” than the SPS 

approach. Here by "sloppy" we mean that in Google a page is a hit if any of the key-

words appear anywhere in the page even if by happenstance those keywords are unre-

lated to the page content (e.g. keyword contained in an advertisement). See Hit Dis-

persion Figures 10-12. 

SPS precision is always higher than Google precision, even when n=1 (i.e. match 

only one phrase). When n=1 Google and SPS are on an almost equal footing, and thus 

their match atomic units are very similar, i.e., a keyword in Google and a single 

phrase in SPS. See Fig. 3. However, SPS still has an advantage over Google. The SPS 

advantage is due to the fact that the SPS basic unit of matching, the phrase, is more 

constrained than the Google basic unit of matching, the keyword. A phrase is made up 

of multiple keywords inter-related by a role. Because the words are inter-related their 

scope is restricted. Moreover, the SPS match target, i.e., the sentence, is more limited 

than the Google match target, the document. In Google, the same words might have a 



A Phrase-based Ontology Enabled Semantic Processing System   77 

 

much broader scope (for example, two words might be far apart within the document 

as they are searched separately). In SPS, the two words will have a narrower scope 

(i.e. the two words will be, not just within the same document, but within the same 

sentence) because they are inter-linked by a role. This difference in scope (i.e., a sen-

tence vs. a document) explains the higher precision for SPS. Consequently, SPS 

should most of the time produce higher precision/relevance and such observation is 

supported by the comparisons illustrated in Figures 3-9. 

8 Conclusion and Future Work 

This work demonstrates that phrase search can produce Web search results with higher 
relevance. Phrase search is superior because the atomic unit for matching is not a key-
word but an inter-related collection of keywords, i.e. a phrase, that constitute some 
meaning. The inter-relation expresses grammatical and semantic information, and it is 
captured in SP forms. In contrast, in keyword search, the interrelation of keywords is 
only approximated by statistical quantities (e.g. word frequency, information gain, 
odds ratio, etc.) of the page containing the keywords. For the future work, we plan to 
improve SPS by tackling more advanced topics such as knowledge-based stemming, 
KL curation and verification, and NL parsing which still can be further improved. We 
also plan to examine use of crawling and phrase indexing, broken word repair, and 
sentence recognition. Each of these advanced topics is briefly explained below. 

Knowledge-based stemming. All words that enter SPS are stemmed. Stemming en-
sures that all variants of a word are represented by a single word. For example, “in-
crease”, “increased”, “increases”, and “increasing”, all stem to “increase”. SPS uses 
the spelling based Porter stemming algorithm [39]. Our experience suggests that 
spelling based stemming can causes two anomalies. 

1. Words with dissimilar meaning might produce the same stem. For example, “de-

part” and “department” stem to “depart”. One means to go or to be deceased, 

whereas the other refers to a division of an organization. "Hers" and "herring" 

stem to "her". One is a possessive pronoun, and the other is a fish. Consequently, 

reverting a stem to raw words might produce words that are not semantically relat-

ed. For example, "depart" will revert to both “department” and “departed”. 

2. Words with the same meaning might produce dissimilar stems. For example, "spin" 

and "spun" stem to themselves, or “airplane” and “plane” stem to “airplan” and 

“plane” respectively. An aliasing mechanism handles dissimilar stems that have 

the same meaning. 

At the moment, these anomalies in stemming are not detrimental to SPS functional-
ity because dissimilar words that occupy the same node in the KL generate different 
threads of meaning; however, some of these meaning threads affect performance dur-
ing SPS processing because they reach dead-ends. Therefore, a spelling based stemmer 
should be replaced with a semantically guided knowledge-based stemmer.  

KL curation and verification. The KL currently consists of 105,898 words supplied 
from three sources: harvested from Internet dictionary [27] (98%), auto-learned, or 
provided by a person (863 words). The KL is not concerned with word meaning but 
with variation in meaning between words. KL edges are to represent this variation in 



78  Joseph Leone and Dong-Guk Shin 

 

meaning. Because the initial automatic build consisted of large number of words, every 
one of these edges could not be checked. However, we can assume that any word har-
vested from a dictionary or provided by a person is correctly placed in the lattice. 
Therefore, the only words that are possibly mis-positioned are auto-learn words (see 
Section 3.4). Auto-learn words can be curated and verified by a person (or crowd); non 
auto-learn words can be checked by random sampling followed by verification.  

NL Parser. The Stanford Dependency (SD) parser [24] is mostly concerned with 
grammatical elements (i.e. passive, active, infinitival, etc.) that denote fine distinctions 
in meaning. For SPS, these subtle distinctions are not important because internally all 
derivatives of the same concept are represented by a single word. Moreover, compu-
ting these fine grammatical distinctions slows down both the SD parser and the transla-
tion of SD parser output to SP Form. NL parsing is at the core of SPS. Consequently, 
an NL parser needs to be developed that can be tightly integrated with the KL to lever-
age both "world knowledge" and grammatical information about words. Such a parser 
would translate natural language to SP form in one step and ideally, at the same time, 
perform the auto-learn function. 

SPS Crawler & Phrase Indexing. SPS depends on Google to look for relevant in-
formation from the Internet. The next step in SPS evolution is to replace Google with a 
crawler that indexes phrases instead of words. In conjunction with the NL parser de-
scribed above such a crawler would, in addition to indexing phrases, also auto-learn 
(i.e., contextually infer the meaning of new words) from the pages that it crawls (i.e. 
reads). 

Broken word repair. Pages that include reader feedback forums or that have been 
OCRed often contain many mis-spelled words (e.g. "sceintist", "asume", "work done 
oy prisoners", "outeide work", "com- pulsory", etc.). Reader feedback forums also 
contain strangely spelled user names (e.g. "MissPoo", "albatroll"), which won't exist in 
any dictionary or encyclopedia. SPS needs to include a facility that determines whether 
an unknown word should be ignored (e.g. "albatroll"), repaired (e.g. "outeide"), or 
looked up (e.g. a word not in the KL). 

Sentence recognition. The parser operates on individual sentences, which need to 
be extracted from the page collection of sentences. Determining where a sentence starts 
and ends is a difficult problem. Currently, a sentence starts with a capital letter and 
ends with period, exclamation, or question mark. However, some sentences are only 
partially recognized by this definition. SPS needs to incorporate a more sophisticated 
way of recognizing sentences. 

9 References 

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Pro-

ceedings of the Seventh International Conference on World Wide Web 7 (WWW7), Philip 

H. Enslow, Jr. and Allen Ellis (Eds.). Elsevier Science Publishers B. V., Amsterdam, The 

Netherlands, The Netherlands, pp. 107-117 (1998) 

2. Leone, J: “A Phrase-based Ontology Enabled Semantic Processing System for Web 

Search”, Ph.D thesis, University of Connecticut, (2013) (To be published) 

3. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communi-

cations of the ACM 18(11), 613–620 (1975) 

4. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema (10 

February 2004). http://www.w3.org/TR/rdf-schema/ (Retrieved August 2013) 

http://www.w3.org/TR/rdf-schema/


A Phrase-based Ontology Enabled Semantic Processing System   79 

 

5. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview (10 Feb 

2004). http://www.w3.org/TR/2004/REC-owl-features-20040210/ (Re-

trieved August 2013) 

6. Klyne, G., Carroll, J.: Resource description framework (RDF): Concepts and abstract syn-

tax (February 2004). http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210 (Retrieved August 2013) 

7. Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V., 

Joel Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: Proceed-

ings of the Thirteenth ACM International Conference on Information and Knowledge 

Management (CIKM '04). ACM, New York, NY, pp. 652-659 (2004) 

8. Cheng, G., Ge, W., Qu, Y.: Falcons: searching and browsing entities on the semantic web. 

In: Proceedings of the 17th International Conference on World Wide Web (WWW '08). 

ACM, New York, NY, USA, pp. 1101-1102 (2008) 

9. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Stefan Decker, S.: Searching 

and browsing Linked Data with SWSE: The Semantic Web Search Engine. Web Seman-

tics 9(4) 365-401 (December 2011) 

10. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Watson: 

A Gateway for Next Generation Semantic Web Applications. Poster, ISWC (2007) 

11. Dietze, H., Schroeder, M.: GoWeb: a semantic search engine for the life science web. 

BMC Bioinformatics 10(Suppl 10):S7 (2009). 

http://www.biomedcentral.com/1471-2105/10/S10/S7 (Retrieved August 

2013) 

12. Leone, J., Shin, D.: Knowledge-Based Visualization of Textual Information Applied in 

Biomedical Text Mining. The Seventh International Multi-Conference on Computing in 

the Global Information Technology (ICCGI 2012). 24-29 June 2012, Venice, Italy. 

13. RDFa (Resource Description Framework in Attributes) is an extension to HTML5. 

http://rdfa.info (Retrieved August 2013) 

14. Adida, B., Herman, I., Sporny, M., Birbeck, M.: RDFa 1.1 Primer (June 2012). 

http://www.w3.org/TR/xhtml-rdfa-primer (Retrieved August 2013). 

15. Hickson, I.: HTML Microdata. 

http://dev.w3.org/html5/md/Overview.html (Retrieved August 2013). 

16. Metadata embedded in Web pages that can be exploited by search engines. 

http://microformats.org (Retrieved August 2013). 

17. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A 

Semantic Web Rule Language Combining OWL and RuleML (21 May 2004). 

http://www.w3.org/Submission/SWRL/ (Retrieved August 2013) 

18. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International Jour-

nal on Semantic Web and Information Systems 5(3), 1–22 (2009) 

19. Horrocks, I.: Ontologies and the semantic web. Communications of the ACM, 51(12), 58-

67 (2008) 

20. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, 

K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L., Kasarskis, A., Lewis, S., 

Matese, J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.: Gene ontology: tool for 

the unification of biology. The Gene Ontology Consortium. Nature Genetics 25(1), 25-29 

(01 May 2000) 

21. Medical Subject Headings (MeSH). http://www.ncbi.nlm.nih.gov/mesh (Re-

trieved August 2013). 

22. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-

Wesley, (1984) 

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.biomedcentral.com/1471-2105/10/S10/S7
http://rdfa.info/
http://www.w3.org/TR/xhtml-rdfa-primer
http://dev.w3.org/html5/md/Overview.html
http://microformats.org/
http://www.w3.org/Submission/SWRL/
http://www.ncbi.nlm.nih.gov/mesh


80  Joseph Leone and Dong-Guk Shin 

 

23. Sowa, J., Dietz, D.: Knowledge Representation: Logical, Philosophical, and Computation-

al Foundations. Brooks/Cole Pub Co, (1999) 

24. The Stanford Dependencies manual. http://www-

nlp.stanford.edu/software/stanford-dependencies.shtml (Retrieved 

August 2013) 

25. Genesereth, M., Ketchpel, S.: Software Agents. Communications of the ACM 37(7), 48-53 

(1994) 

26. Lenat, D.: CYC: A large-scale investment in knowledge infrastructure. Communications of 

the ACM 38(11), 33-38 (1995) 

27. A hyperlinked dictionary. http://www.hyperdic.net (Retrieved August 2013) 

28. The Wikipedia web-based encyclopedia. http://en.wikipedia.org (Retrieved 

August 2013) 

29. Unified Medical Language System (UMLS). 

http://www.nlm.nih.gov/research/umls (Retrieved August 2013) 

30. Haas, N., Hendrix, G.: An approach to acquiring and applying knowledge. In: Proceedings 

of AAAI, pp. 235-239 (1980) 

31. Haas, N., Hendrix, G.: Learning by Being Told: Acquiring Knowledge for Information 

Management. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (Eds.), Machine Learn-

ing: An Artificial Intelligence Approach. Morgan Kaufmann Publishers, Inc., vol. 1, Chap-

ter 13, (1983) 

32. Niagara Falls Thunder Alley magazine. 

http://www.niagarafrontier.com/accident.html (Retrieved August 

2013) 

33. Fargues, J., et al.: Conceptual graphs for semantics and knowledge processing. IBM Jour-

nal of Research and Development 30(1), (January 1986) 

34. Information Hyperlinked Over Proteins (iHOP) Scientific Literature Project. 

http://www.ihop-net.org/UniPub/iHOP/gs/32484.html (Retrieved Au-

gust 2013) 

35. Myosin Structure. 

http://www.cs.stedwards.edu/chem/Chemistry/CHEM43/CHEM43/Myo

sin/STRUCT~1.HTM (Retrieved August 2013) 

36. Madame Curie Bioscience Database. 

http://www.landesbioscience.com/curie/chapter/2152/ (Retrieved 

August 2013) 

37. American Society for Cell Biology (ASCB) Molecular Biology of the Cell (MBoC). 

http://www.molbiolcell.org/cgi/content/abstract/5/11/1199 (Re-

trieved August 2013) 

38. ScienceDirect. http://www.sciencedirect.com/ (Retrieved August 2013) 

39. The Porter Stemming Algorithm. 

http://www.tartarus.org/~martin/PorterStemmer (Retrieved August 

2013) 

http://www-nlp.stanford.edu/software/stanford-dependencies.shtml
http://www-nlp.stanford.edu/software/stanford-dependencies.shtml
http://www.hyperdic.net/
http://en.wikipedia.org/
http://www.nlm.nih.gov/research/umls
http://www.niagarafrontier.com/accident.html
http://www.ihop-net.org/UniPub/iHOP/gs/32484.html
http://www.cs.stedwards.edu/chem/Chemistry/CHEM43/CHEM43/Myosin/STRUCT~1.HTM
http://www.cs.stedwards.edu/chem/Chemistry/CHEM43/CHEM43/Myosin/STRUCT~1.HTM
http://www.landesbioscience.com/curie/chapter/2152/
http://www.molbiolcell.org/cgi/content/abstract/5/11/1199
http://www.sciencedirect.com/
http://www.tartarus.org/~martin/PorterStemmer

