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Abstract. Detecting early signs of failures (anomalies) in complex systems is
one of the main goal of preventive maintenance. It allows in particular to avoid
actual failures by (re)scheduling maintenance operations in a way that optimizes
maintenance costs. Aircraft engine health monitoring is one representative ex-
ample of a field in which anomaly detection is crucial. Manufacturers collect
large amount of engine related data during flights which are used, among other
applications, to detect anomalies. This article introduces and studies a generic
methodology that allows one to build automatic early signs of anomaly detection
in a way that builds upon human expertise and that remains understandable by
human operators who make the final maintenance decision. The main idea of the
method is to generate a very large number of binary indicators based on paramet-
ric anomaly scores designed by experts, complemented by simple aggregations of
those scores. A feature selection method is used to keep only the most discrim-
inant indicators which are used as inputs of a Naive Bayes classifier. This give
an interpretable classifier based on interpretable anomaly detectors whose pa-
rameters have been optimized indirectly by the selection process. The proposed
methodology is evaluated on simulated data designed to reproduce some of the
anomaly types observed in real world engines.

Keywords: : Engine Health Monitoring; Turbofan; Fusion; Anomaly Detection.

1 Introduction

Automatic anomaly detection is a major issue in numerous areas and has generated
a vast scientific literature [5]. We focus in this paper on a very important application
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case, aircraft engine health monitoring which aims at detecting early signs of failures,
among other applications [1,18]. Aircraft engines are generally made extremely reliable
by their conception process and thus have low rate of operational events. For example,
in 2013, the CFM56-7B engine, produced jointly by Snecma and GE aviation, has a
rate of in flight shut down (IFSD) of 0.002 (per 1000 Engine Flight Hour) and a rate
of aborted take-off (ATO) of 0.005 (per 1000 departures). This dispatch availability of
nearly 100 % (99.962 % in 2013) is obtained via regular maintenance operations but
also via engine health monitoring (see also e.g. [19] for an external evaluation).

This monitoring is based, among other sources, on data transmitted by satellites1

between aircraft and ground stations. Typical transmitted messages include engine sta-
tus overview as well as useful measurements collected as specific instants (e.g., dur-
ing engine start). Flight after flight, measurements sent are analyzed in order to detect
anomalies that are early signs of degradation. Potential anomalies can be automatically
detected by algorithms designed by experts. If an anomaly is confirmed by a human
operator, a maintenance recommendation is sent to the company operating the engine.

As a consequence, unscheduled inspections of the engine are sometimes required.
These inspections are due to the abnormal measurements. Missing a detection of early
signs of degradation can result in an IFSD, an ATO or a delay and cancellation (D&C).
Despite the rarity of such events, companies need to avoid them to minimize unexpected
expenses and customers’ disturbance. Even in cases where an unscheduled inspection
does not prevent the availability of the aircraft, it has an attached cost: it is therefore
important to avoid as much as possible useless inspections.

We describe in this paper a general methodology to built complex automated deci-
sion support algorithms in a way that is comprehensible by human operators who take
final decisions. The main idea of our approach is to leverage expert knowledge in order
to build hundreds of simple binary indicators that are all signs of the possible existence
of an early sign of anomaly in engine health monitoring data. The most discriminative
indicators are selected by a standard forward feature selection algorithm. Then an auto-
matic classifier is built on those features. While the classifier decision is taken using a
complex decision rule, the interpretability of the features, their expert based nature and
their limited number allows the human operator to at least partially understand how the
decision is made. It is a requirement to have a trustworthy decision for the operator. It
should be noted that while this paper focuses on aircraft engines, the methodology can
be applied to various other contexts. For instance a related but simpler methodology
was proposed in [10] in the context of malware detection.

The rest of the paper is organized as follows. Section 2 describes the engine health
monitoring context. The methodology is presented in details in Section 3. Section 4 is
dedicated to a simulation study that validates the proposed approach.

1 using the commercial standard Aircraft Communications Addressing and Reporting System
(ACARS, see http://en.wikipedia.org/wiki/ACARS), for instance.
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2 Application context

2.1 Flight data

Engine health monitoring is based in part on flight data acquisition. Engines are equipped
with multiple sensors which measure different physical quantities such as the high pres-
sure core speed (N2), the Fuel Metering Valve (FMV), the Exhausted Gas Temperature
(EGT), etc. (See Figure 1.) Those measures are monitored in real time during the flight.
For instance the quantities mentioned before (N2, FMV, etc.) are analyzed, among oth-
ers, during the engine starting sequence. This allows one to check the good health of
the engine. If a potential anomaly is detected, a diagnostic is sent to an operator of
the owner of the engine. The airline may then have to postpone the flight or cancel it,
depending on the criticality of the fault and the estimated repair time.

Fig. 1. Localization of some followed parameters on the Engine

The monitoring can also be done flight after flight to detect any change that can be
flagged as early signs of degraded behavior. This is done by compressing the in flight
measurements into engine status overviews. The methodology introduced in this article
is mostly designed for this latter kind of monitoring.

2.2 Detecting faults and abnormal behaviors

Traditional engine health monitoring is strongly based on expert knowledge and field
experience (see e.g. [1,18] for surveys and [7] for a concrete example). Faults and early
signs of faults are identified from suitable measurements associated to adapted compu-
tational transformation of the data. For instance, the different measurements (tempera-
tures, vibration, etc.) are influenced by the flight parameters (e.g. throttle position) and
conditions (outside temperature, etc.). Variations in the measured values can therefore
result from variations in the parameters and conditions rather than being due to abnor-
mal behavior. Thus a typical computational transformation consists in preprocessing
the measurements in order to remove dependency to the flight context [15].
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In practice, the choice of measurements and computational transformations is gen-
erally done based on expert knowledge. For instance in [17], a software is designed to
record expert decision about a time interval on which to monitor the evolution of such
a measurement (or a time instant when such a measurement should be recorded). Based
on the recorded examples, the software calibrates a pattern recognition model that can
automatically reproduce the time segmentation done by the expert. Once the indicators
have been computed, the normal behavior of the indicators can be learned. The residu-
als between predictions and actual indicators can be statistically modeled as a Gaussian
vector, for instance. A score measurement is obtained from the likelihood of this distri-
bution. The normalized vector is a failure score signature that may be described easily
by experts to identify the fault origin, in particular because the original indicators have
some meaning for them. See [6], [7] and [14] for other examples.

However experts are generally specialized on particular subsystems, thus each al-
gorithm focuses mainly on a specific subsystem despite the need of a diagnostic of the
whole system.

2.3 Data and detection fusion

The global diagnostic is currently done by the operator who collects all available results
of diagnostic applications. The task of taking a decision based on all incoming infor-
mation originating from different subsystems is difficult. A first difficulty comes from
dependencies between subsystems which means that for instance in some situations,
a global early sign of failure could be detected by discovering discrepancies between
seemingly perfectly normal subsystems. In addition, subsystem algorithms can provide
conflicting results or decisions with very low confidence levels. Furthermore, the ex-
treme reliabilities of engines lead to an exacerbated trade off between false alarm levels
and detection levels, leading in general to a rather high level of false alarms, at least
at the operator level. Finally, the role of the operator is not only to identify a possible
early sign of failure, but also to issue recommendations on the type of preventive main-
tenance needed. In other words, the operator needs to identify the possible cause of the
potential failure.

2.4 Objectives

The long term goal of engine health monitoring is to reach automated accurate, trust-
worthy and precise maintenance decisions during optimally scheduled shop visits, but
also to drastically reduce operational events such as IFSD and ATO. However, partly
because of the current industrial standard, pure black box modeling is unacceptable. In-
deed, operators are currently trained to understand expertly designed indicators and to
take complex integrated decisions on their own. In order for a new methodology to be
accepted by operators, it has at least to be of a gray box nature, that is to be (partially)
explainable via logical and/or probabilistic reasoning. Then, our objective is to design
a monitoring methodology that helps the human operator by proposing integrated deci-
sions based on expertly designed indicators with a “proof of decision”.
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3 Architecture of the Decision Process

3.1 Engine health monitoring data

In order to present the proposed methodology, we first describe the data obtained via
engine health monitoring and the associated decision problem.

We focus here on ground based long term engine health monitoring. Each flight pro-
duces dozens of timestamped flight events and data. Concatenating those data produces
a multivariate temporal description of an engine whose dimensions are heterogeneous.
In addition, sampling rates of individual dimensions might be different, depending on
the sensors, the number of critical time points recorded in a flight for said sensor, etc.

Based on expert knowledge, this complex set of time series is turned into a very
high dimensional indicator vector. The main idea, outlined in the previous section, is
that experts generally know what is the expected behavior of a subsystem of the engine
during each phase of the flight. Then the dissimilarity between the expected behavior
and the observed one can be quantified leading to one (or several) anomaly scores.
Such scores are in turn transformed into binary indicators where 1 means an anomaly
is detected and 0 means no anomaly detected. This is somewhat related to the way
malware are characterized in [10], but with a more direct interpretation of each binary
feature2.

This transformation has two major advantages: it homogenizes the data and it in-
troduces simple but informative features (each indicator is associated to a precise inter-
pretation related to expert knowledge). It leads also to a loss of information as the raw
data are in general not recoverable from the indicators. This is considered here a minor
inconvenience as long as the indicators capture all possible failure modes. This will be
partially guaranteed by including numerous variants of each indicator (as explained be-
low). On a longer term, our approach has to be coupled with field experience feedback
and expert validation of its coverage.

After the expert guided transformation, the monitoring problem becomes a rather
standard classification problem: based on the binary indicators, the decision algorithm
has to decide whether there is an anomaly in the engine and if, this is the case, to identify
the type of the anomaly (for instance by identifying the subsystem responsible for the
potential problem).

We describe now in more details the construction of the binary indicators.

3.2 Some types of anomalies

Some typical univariate early signs of anomalies are shown on Figures 2, 3 and 4 which
display the evolution through time of a numerical value extracted from real world data.
One can identify, with some practice, a variance shift on Figure 2, a mean shift on
Figure 3 and a trend modification (change of slope) on Figure 4. In the three cases, the
change instant is roughly at the center of the time window.

2 In [10], a value 1 for a feature simply means that the software under study has a particular
quality associated to the feature, without knowing whether this quality is an indication of its
malignity.
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Fig. 2. Variance shift
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Fig. 3. Mean shift
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Fig. 4. Trend modification

The main assumption used by experts in typical situations is that, when external
sources of change have been accounted for, the residual signal should be stationary in a
statistical sense. Assuming that a signal of length m

Xi = (Xi1(θ1), ...,Xim(θm)),

is made of m values generated independently from a fixed parametric probability model
with a parameter θ . In this framework, the signal is stationary if the parameters are
fixed, that is, if all the θ j are identical. Then, detecting an anomaly amounts to detecting
a change in the time series (as illustrated by the three Figures above). This can be done
via numerous techniques [5] in particular with well known statistical tests [2]. In the
multivariate cases, similar shifts in the signal can be associated to anomalies. More
complex scenarios, involving for instance time delays, can also be designed by experts.

3.3 Exploring the parameter space

While experts can generally describe explicitly what type of change they are expecting
for some specific early signs of anomaly, they can seldom provide detailed parameter
settings for statistical tests (or even for the aggregation technique that could lead to a
statistical test after complex calculations). To maximize coverage it seems natural to
include numerous indicators based on variations of the anomaly detectors compatible
with expert knowledge.

Let us consider for illustration purpose that the expert recommends to look for shifts
in mean of a certain quantity as early signs of a specific anomaly. If the expert believes
the quantity to be normally distributed with a fixed variance, then a natural test would
be Student’s t-test. If the expert has no strong priors on the distribution, a natural test
would be the MannWhitney U test. Both can be included to maximize coverage.

Then, in both cases, one has to assess the time scale of the shift. Indeed those tests
work by comparing summary statistics of two populations, before and after a possible
change point. To define the populations, the expert has to specify the length of the time
windows to consider before and after the possible change point: this is the expected time
scale at which the shift will appear. In most cases, the experts can only give a rough idea
of the scale. Again, maximizing the coverage leads to the inclusion of several scales
compatible with the experts’ recommendations.
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Given the choice of the test, of its scale and of a change point, one can construct
a statistic. A possible choice for the indicator could be the value of the statistic or the
associated p-value. However, we choose to use simpler indicators to ease their interpre-
tation. Indeed, the raw value of a statistic is generally difficult to interpret. A p-value is
easier to understand because of the uniform scale, but can still lead to misinterpretation
by operators with insufficient statistical training. We therefore choose to use binary in-
dicators for which the value 1 corresponds to a rejection of the null hypothesis of the
underlying test to a given level (the null hypothesis is here the case with no mean shift).

3.4 Confirmatory indicators

Finally, as pointed out before, aircraft engines are extremely reliable, a fact that in-
creases the difficulty in balancing sensibility and specificity of anomaly detectors. In
order to alleviate this difficulty, we build high level indicators from low level tests. For
instance, if we monitor the evolution of a quantity on a long period compared to the
expected time scale of anomalies, we can compare the number of times the null hypoth-
esis of a test has been rejected on the long period with the number of times it was not
rejected, and turn this into a binary indicator with a majority rule.

3.5 Decision

To summarize, we construct parametric anomaly scores from expert knowledge, to-
gether with acceptable parameter ranges. By exploring those ranges, we generate nu-
merous (possible hundreds of) binary indicators. Each indicator can be linked to an
expertly designed score with a specific set of parameters and thus is supposedly easy to
interpret by operators. Notice that while we are focused in this presentation on temporal
data, this framework can be applied to any data source.

The final decision step consists in classifying these high dimensional binary vectors
into at least two classes, i.e., the presence or absence of an anomaly. A classification into
more classes is highly desirable if possible, for instance to further discriminate between
seriousness of anomalies and/or sources (in terms of subsystems of the engine).

As explained before, we aim in the long term at gray box modeling, so while numer-
ous classification algorithms are available see e.g. [13], we shall focus on interpretable
ones. In this paper, we choose to use Random Forests [3] as they are very adapted to
binary indicators and to high dimensional data. They are also known to be robust and to
provide state-of-the-art classification performances at a very small computational cost.
While they are not as interpretable as their ancestors CART [4], they provide at least
variable importance measures that can be used to identify the most important indicators.

Another classification algorithms used in this paper is naive Bayes classifier [12]
which is also appropriate for high dimensional data. They are known to provide good
results despite the strong assumption of the independence of features given the class. In
addition, decisions taken by a naive Bayes classifier are very easy to understand thanks
to the estimation of the conditional probabilities of the feature in each class. Those
quantities can be shown to the human operator as references.
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Finally, while including hundreds of indicators is important to give a broad coverage
of the parameter spaces of the expert scores and thus to maximize the probability of de-
tecting anomalies, it seems obvious that some redundancy will appear. Unlike [10] who
choose features by random projection, the proposed methodology favors interpretable
solutions, even at the expense of the classification accuracy: the goal is to help the
human operator, not to replace her/him. Therefore, we have chosen to apply a feature
selection technique [9] to this problem. The reduction of number of features will ease
the interpretation by limiting the quantity of information transmitted to the operators
in case of a detection by the classifier. Among the possible solutions, we choose to use
the Mutual information based technique Minimum Redundancy Maximum Relevance
(mRMR, [16]) which was reported to give excellent results on high dimensional data
(see also [8] for another possible choice).

4 A simulation study

4.1 Introduction

It is difficult to find real data with early signs of degradations, because their are scarce
and moreover the scheduled maintenance operations tend to remove these early signs.
Experts could study in detail recorded data to find early signs of anomalies whose ori-
gins were fixed during maintenance but it is close to looking for a needle in a haystack,
especially considering the huge amount of data to analyze. We will therefore rely in this
paper on simulated data. Our goal is to validate the interest of the proposed methodol-
ogy in order to justify investing in the production of carefully labelled real world data.

In this section we begin by the description of the simulated data used for the eval-
uation of the methodology, and then we will present the performance obtained on this
data.

4.2 Simulated data

The simulated data are generated according to the univariate shift models described in
Section 3.2: each observation /linebreak [4] Xi is a short time series which is recorded as
at specific time points, e.g., Xi = (Xi(ti j))1≤ j≤mi . As pointed out in Section 3.1, signals
can have different time resolutions. This difficulty is integrated in the simulated data by
using different lengths/dimensions for each observation (hence the mi numbers of time
points). Notice that the time points (ti j)1≤ j≤mi are introduced here only for generative
purposes and are not used in the actual decision process. For multivariate data sets, they
could become useful (e.g. to correlate potential shift detection), but this is out of the
scope of the present paper.

In the rest of the paper, the notation Z ∼N (µ,σ2) says that the random variable
Z follows a Gaussian distribution with mean µ and variance σ2 and the notation W ∼
U (S) says that the random variable W follows the uniform distribution on the set S
(which can be finite such as {1,2,3} or infinite such as [0,1]).

We generate two data sets: a simple one A and a slightly more complex one B. In
both cases, it is assumed that expert based normalisation has been performed. Therefore
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when no shift in the data distribution occurs, we observe a stationary random noise
modeled by the standard Gaussian distribution. This assumption made about the noise
may seem very strong but the actual goal of this paper is to evaluate the methodology
and we choose to use simple distribution and simple statistical tests. In the future, we
plan to use more realistic noise associated with more complex tests. An observation Xi
with no shift is then generated as follows:

1. mi, the length of the signal, is chosen as mi ∼U ({100,101, . . . ,200}) ;
2. the mi values (Xi(ti j))1≤ j≤mi are sampled independently from the standard Gaussian

distribution, that is Xi(ti j)∼N (µ = 0,σ2 = 1).

Anomalous signals use the same distribution of the signal length as normal signals.
More precisely, an anomalous observation Xi is generated as follows:

1. mi, the length of the signal, is chosen as mi ∼U ({100,101, . . . ,200}) ;
2. the change point ts

i is chosen as

ts
i ∼U

({⌊
2mi

10

⌋
,

⌊
2mi

10

⌋
+1, . . . ,

⌊
8mi

10

⌋})
,

where bxc is the integer part of x. For instance, if mi = 100, then the change point
is chosen among the time points t20 to t80 ;

3. the mi values (Xi(ti j))1≤ j≤mi are generated according to one anomaly model.

Anomalies are in turn modelled after the three examples given in Figures 2, 3 and 4.
The three types of shift are:

1. a variance shift: in this case, the parameter of the shift is the variance after the
change point, σ2

i , with σi ∼U ([1.01,5]). Given σi, the (Xi(ti j))1≤ j≤mi are sampled
independently as Xi(ti j) ∼ N (µ = 0,σ2 = 1) when ti j < ts

i (before the change
point) and Xi(ti j)∼N (µ = 0,σ2 = σ2

i ) when ti j ≥ ts
i (after the change point). See

Figure 5 for an example;
2. a mean shift: in this case, the parameter of the shift is the mean after the change

point, µi. In set A, µi ∼U ([1.01,5]) while in set B, µi ∼U ([0.505,2.5]). Given µi,
the (Xi(ti j))1≤ j≤mi are sampled independently as Xi(ti j)∼N (µ = 0,σ2 = 1) when
ti j < ts

i (before the change point) and Xi(ti j) ∼N (µ = µi,σ
2 = 1) when ti j ≥ ts

i
(after the change point). See Figure 6 for an example;

3. a slope shift: in this final case, the parameter of the shift is a slope λi with λi ∼
U ([0.02,3]). Given λi, the (Xi(ti j))1≤ j≤mi are sampled independently as Xi(ti j) ∼
N (µ = 0,σ2 = 1) when ti j < ts

i (before the change point) and Xi(ti j) ∼N (µ =
λi(ti j − ts

i ),σ
2 = 1) when ti j ≥ ts

i (after the change point). See Figure 7 for an
example.

We generate according to this procedure two data sets with 6000 observations corre-
sponding to 3000 observations with no anomaly, and 1000 observations for each of the
three types of anomalies. The only difference between data set A and data set B is the
amplitude of the mean shift which is smaller in B, making the classification harder.
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Fig. 5. variance shift
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Fig. 6. mean shift
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Fig. 7. trend modification

4.3 Indicators

As explained in Section 3.3, binary indicators are constructed from expert knowledge by
varying parameters, including scale and position parameters. In the present context, we
use sliding and jumping windows: for each possible position of the window, a classical
statistical test is conducted to decide whether a shift in the signal occurs at the center
of the window (see Figure 8). Individual tests obtained from different positions are
combined to create binary indicators.

1 50 100 150
−4

−2

0

2

4

6

tij

X
i

τ

δ

miti
s

Fig. 8. Illustration of the sliding and jumping windows. τ is the length of the window. δ is the
jump parameter. ts

i is the change point.

More precisely, a window of length τ is a series of τ consecutive time points in a
signal (Xi(ti j))1≤ j≤mi (in other words, this is a sub-signal). For a fixed τ ≤mi, there are
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mi− τ + 1 windows in Xi, from (Xi(ti j))1≤ j≤τ to (Xi(ti j))mi−τ+1≤ j≤mi (when sorted in
order of their first time points).

Given a window of length τ (assumed even) starting at position k, a two sample
test is conducted on the two subsets of values corresponding to the first half of the
window and to the second half. More precisely, we extract from the series of val-
ues (Xi(ti j))k≤ j≤k+τ−1 a first sample S1 = (Xi(ti j))k≤ j≤k+τ/2−1 and a second sample
S2 = (Xi(ti j))k+τ/2≤ j≤k+τ−1. Then a test of inequality between S1 and S2 is conducted
(inequality is defined with respect to some statistical aspect). The “expert” designed
tests are here (notice that those tests do not include a slope shift test):

1. the Mann-Whitney-Wilcoxon U test (non parametric test for shift in mean);
2. the two sample Kolmogorov-Smirnov test (non parametric test for differences in

distributions);
3. the F-test for equality of variance (parametric test based on a Gaussian hypothesis).

From this general principle, we derive a large set of indicators by varying the length of
the window, the level of significance of the test and the way to combine results from all
the windows that can be extracted from a signal.

In practice, for an observation (Xi(ti j))1≤ j≤mi , we use three different window lengths,
τ = 30, τ = 50 and τ = 100. We use also three different levels for the tests, namely
0.005, 0.1 and 0.5. For a fixed window length τ and a fixed test, an observation (Xi(ti j))1≤ j≤mi

is transformed into mi− τ +1 p-values produced by applying the test to the mi− τ +1
windows extracted from the observation. For each significance level, the p-values are
binarized giving 1 or 0 whether the null hypothesis of identical distribution between S1

and S2 is rejected or not, leading to mi− τ +1 binary values.
The next step consists in turning the raw binary values into a set of indicators pro-

ducing the same number of indicators for all observations. The simplest binary indicator
equals to 1 if and only if at least one binary value among the mi− τ + 1 is equal to 1
(that is if at least one window defines two sub-samples that differ according to the cho-
sen test). Notice that as we use 3 window lengths, 3 tests, and 3 levels, we obtained this
way 27 simple binary indicators.

Then, more complex binary indicators are generated, as explained in Section 3.4.
In a way, this corresponds to build very simple binary classifiers on the binary values
obtained from the tests. All those indicators are based on the notion of consecutive
windows. In order to vary the time resolution of this process, we first introduce a jump
parameter δ . Two windows are consecutive according to δ if the first time point of the
second window is the (δ +1)-th time point of the first window. For instance, if δ = 5,
(Xi(ti j))1≤ j≤τ and (Xi(ti j))6≤ j≤τ+5 are consecutive windows. In practice, we use three
values for δ , namely 1, 5 and 10.

For each value of δ and for each series of mi−τ +1 binary values, we compute the
following derived indicator:

1. the global ratio indicator is equal to 1 if and only if on a fraction of at least β of
all possible windows, the test detects a change. This indicator does not use the fact
that windows are consecutive, but it is nevertheless affected by δ . Indeed, values
strictly larger than 1 for δ reduce the total number of windows under consideration;
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2. the consecutive ratio indicator is equal to 1 if and only if there is a series of β (mi−
τ +1) consecutive windows on which the test detects a change ;

3. the local ratio indicators is equal to 1 if and only if there is a series of l consecutive
windows among which the tests detects at least k times a change.

Those derived indicators are parametric. In the present experiments, we use three dif-
ferent values for β (used by the first two derived indicators), namely 0.1, 0.3 and 0.5.
For the pair (l,k) used by the last derived indicator, we used three different pairs (3,2),
(5,3) and (5,4).

A simple series of mi−τ +1 binary values allows us to construct 27 derived indica-
tors (3 values for δ times 3 values for the parameters of each of the 3 types of derived
indicators). As we have 27 of such series (because of the 3 window lengths, 3 tests and
3 levels), we end up with 729 additional indicators for a total of 756 binary indicators.

In addition, based on expert recommendation, we apply the entire processing both
to the original signal and to a smoothed signal (using a simple moving average over
5 measurements). The total number of indicators is therefore 1512. However many of
them are identical over the 6000 observations and the final number of distinct binary
indicators is 810. The redundancy is explained by several aspects. For instance, while
the smoothing changes the signal, it has a limited effect on the test results. Also, when
the level of the test is high, the base binary values tend to be all equal to one. When
the ratio β is low, there are not many differences between the derived indicators with
respect to δ , etc.

It should be noted that the parameters used both for the simulated data and the indi-
cators have been chosen so as to illustrate the possibilities of the proposed architecture
of the decision process. The values have been considered reasonable (see Table 1 for
a summary of these values) and representative of what would be useful in practice by
experts of our application domain. It is however expected than more statistical tests
and more indicators should be considered in practice to cover the range of the possible
anomalies.

4.4 Performance analysis

Each data set is split in a balanced way into a learning set with 1000 signals and a
test set with 5000 signals (the class proportions from the full data set are kept in the
subsets). We report the global classification accuracy (the classification accuracy is the
percentage of correct predictions, regardless of the class) on the learning set to monitor
possible over fitting. The performances of the methodology are evaluated on 10 bal-
anced subsets of size 500 from the 5000 signals’ test set. This allows to evaluate both
the average performances and their variability. For the Random Forest, we also report
the out-of-bag (oob) estimate of the classification accuracy: this quantity is obtained
during the bootstrap procedure used to construct the forest. Indeed each observation
appears as a training observation in only roughly two third of the trees that constitute
the forest. Then the prediction of the remaining trees for this observation can be aggre-
gated to give a decision. Comparing this decision to the true value gives the out-of-bag
estimate of the classification error for this observation (see [3] for details). Finally, for
the Naive Bayes classifier, we use confusion matrices and class specific accuracies to
gain more insights on the results when needed.
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Parameters Values

statistical test
Mann-Whitney-Wilcoxon U test
Two sample Kolmogorov-Smirnov test
F-test

length of window (τ)
30
50
100

levels
0.005
0.1
0.5

jump (δ )
1
5
10

fraction for global ratio indicator and
consecutive ratio indicator (β )

0.1
0.3
0.5

k among l for local ratio indicators (l,k)
(3,2)
(5,3)
(5,4)

moving average
1
5

Table 1. Listing of the values used for the parameters of the indicators.
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4.5 Performances with all indicators
As indicators are expertly designed and should cover the useful parameter range of the
tests, it is assumed that the best classification performances should be obtained when
using all of them, up to the effects of the curse of dimensionality.

Data set Training set acc. OOB acc. Test set average acc.

A 0.9770 0.9228 0.9352 (0.0100)
B 0.9709 0.9118 0.9226 (0.0108)

Table 2. Classification accuracy of the Random Forest using the 810 binary indicators. For the test
set, we report the average classification accuracy and its standard deviation between parenthesis.

Table 2 reports the global classification accuracy of the Random Forest, using all the
indicators. As expected, Random Forests suffer neither from the curse of dimensionality
nor from strong over fitting (the test set performances are close to the learning set ones).
Table 3 reports the same performance indicator for the Naive Bayes classifier. Those
performances are significantly lower than the one obtained by the Random Forest. As
shown by the confusion matrix on Table 4, the classification errors are not concentrated
on one class (even if the errors are not perfectly balanced). This tends to confirm that the
indicators are adequate to the task (this was already obvious from the Random Forest).

Data set Training set accuracy Test set average accuracy

A 0.7856 0.7718 (0.0173)
B 0.7545 0.7381 (0.0178)

Table 3. Classification accuracy of the Naive Bayes classifier using the 810 binary indicators.
For the test set, we report the average classification accuracy and its standard deviation between
parenthesis.

Predicted class
No anomaly Variance Mean Slope total

True class

No anomaly 1759 667 45 29 2500
Variance 64 712 50 3 829
Mean 7 2 783 37 829
Slope 32 7 195 595 829

Table 4. Data set A: confusion matrix with all indicators for Naive Bayes classifier on the full test
set.
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4.6 Feature selection

While the Random Forest gives very satisfactory results, it would be unacceptable for
human operators as it operates in a black box way. While the indicators have simple
interpretation, it would be unrealistic to ask to an operator to review 810 binary values
to understand why the classifier favors one class over the others. In addition, the perfor-
mances of the Naive Bayes classifier are significantly lower than those of the Random
Forest one. Both drawbacks favor the use of a feature selection procedure.

As explained in Section 3.5, the feature selection relies on the mRMR ranking pro-
cedure. A forward approach is used to evaluate how many indicators are needed to
achieve acceptable predictive performances. Notice that in the forward approach, in-
dicators are added in the order given by mRMR and then never removed. As mRMR
takes into account redundancy between the indicators, this should not be a major issue.
Then for each number of indicators, a Random Forest and a Naive Bayes classifier are
constructed and evaluated.
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Fig. 9. Data set A Random Forest: classification accuracy on learning set (circle) as a function
of the number of indicators. A boxplot gives the classification accuracies on the test subsets,
summarized by its median (black dot inside a white circle). The estimation of those accuracies
by the out-of-bag (oob) bootstrap estimate is shown by the crosses.

Figures 9, 10, 11 and 12 summarize the results for the 100 first indicators. The
classification accuracy of the Random Forest increases almost monotonously with the
number of indicators, but after roughly 25 to 30 indicators (depending on the data set),
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Fig. 10. Data set B Random Forest, see Figure 9 for details.
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Fig. 11. Data set A Naive Bayes classifier: classification accuracy on learning set (circle) as a
function of the number of indicators. A boxplot gives the classification accuracies on the test
subsets, summarized by its median (black dot inside a white circle).
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Fig. 12. Data set B Naive Bayes classifier, see Figure 11 for details.

performances on the test set tend to stagnate (this is also the case of the out-of-bag
estimate of the performances, which shows, as expected, that the number of indicators
could be selected using this measure). In practice, this means that the proposed proce-
dure can be used to select the relevant indicators implementing this way an automatic
tuning procedure for the parameters of the expertly designed scores.

Results for the Naive Bayes classifier are slightly more complex in the case of the
second data set, but they confirm that indicator selection is possible. Moreover, reducing
the number of indicators has here a very positive effect on the classification accuracy of
the Naive Bayes classifier which reaches almost as good performances as the Random
Forest. Notice that the learning set performances of the Naive Bayes classifier are al-
most identical to its test set performances (which exhibit almost no variability over the
slices of the full test set). This is natural because the classifier is based on the estimation
of the probability of observing a 1 value independently for each indicator, conditionally
on the class. The learning set contains at least 250 observations for each class, leading
to a very accurate estimation of those probabilities and thus to very stable decisions.
In practice one can therefore select the optimal number of indicators using the learning
set performances, without the need of a cross-validation procedure (optimality is with
respect to the classification accuracy).

It should be noted that significant jumps in performances can be observed in all
cases. This might be an indication that the ordering provided by the mRMR procedure
is not optimal. A possible solution to reach better indicator subsets would be to use a
wrapper approach, leveraging the computational efficiency of both Random Forest and
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Fig. 13. Data set A Naive Bayes classifier: classification error for each class on the training set
(solid lines) and on the test set (dotted lines, average accuracies only).

Naive Bayes construction. Meanwhile Figure 13 shows in more detail this phenomenon
by displaying the classification error class by class, as a function of the number of indi-
cators, in the case of data set A. The figure shows the difficulty of discerning between
mean shift and trend shift (for the latter, no specific test have been included, on purpose).
But as the strong decrease in classification error when the 23-th indicator is added con-
cerns both classes (mean shift and trend shift), the ordering provided by mRMR could
be questioned.

4.7 Indicator selection

Based on results shown on Figures 11 and 12, one can select an optimal number of
binary indicators, that is the number of indicators that maximizes the classification ac-
curacy on the learning set. However, this leads in general to a too large number of
indicators. Thus we restrict the search below a maximal number of indicators in order
to avoid flooding the human operator with to many results.

For instance Table 5 gives the classification accuracy of the Naive Bayes classifier
using the optimal number of binary indicators between 1 and 30.

While the performances are not as good as the ones of the Random Forest, they
are much improved compared to the ones reported in Table 3. In addition, the selected
indicators can be shown to the human operator together with the estimated probabilities
of getting a positive result from each indicator, conditionally on each class, shown on
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Data set Training set acc. Test set average acc. # of indicators

A 0.8958 0.8911 (0.0125) 23
B 0.8828 0.8809 (0.0130) 11

Table 5. Classification accuracy of the Naive Bayesian network using the optimal number binary
indicators between 1 and 30. For the test set, we report the average classification accuracy and its
standard deviation between parenthesis.

Table 6. For instance here the first selected indicator, con f u(2,3), is a confirmation
indicator for the U test. It is positive when there are 2 windows out of 3 consecutive
ones on which a U test was positive. The Naive Bayes classifier uses the estimated
probabilities to reach a decision: here the indicator is very unlikely to be positive if
there is no change or if the change is a variance shift. On the contrary, it is very likely
to be positive when there is a mean or a trend shift. While the table does not “explain”
the decisions made by the Naive Bayes classifier, it gives easily interpretable hints to
the human operator.

5 Conclusion and perspectives

In this paper, we have introduced a diagnostic methodology for engine health monitor-
ing that leverages expert knowledge and automatic classification. The main idea is to
build from expert knowledge parametric anomaly scores associated to range of plausi-
ble parameters. From those scores, hundreds of binary indicators are generated in a way
that covers the parameter space as well as introduces simple aggregation based classi-
fiers. This turns the diagnostic problem into a classification problem with a very high
number of binary features. Using a feature selection technique, one can reduce the num-
ber of useful indicators to a humanly manageable number. This allows a human operator
to understand at least partially how a decision is reached by an automatic classifier. This
is favored by the choice of the indicators which are based on expert knowledge and on
very simple decision rules. A very interesting byproduct of the methodology is that it
can work on very different original data as long as expert decision can be modelled
by a set of parametric anomaly scores. This was illustrated by working on signals of
different lengths.

The methodology has been shown sound using simulated data. Using a reference
high performance classifier, Random Forests, the indicator generation technique covers
sufficiently the parameter space to obtain a high classification rate. Then, the feature
selection mechanism (here a simple forward technique based on mRMR) leads to a
reduced number of indicators (23 for one of the data set) with good predictive per-
formances when paired with a simpler classifier, the Naive Bayes classifier. As shown
in the experiments, the class conditional probabilities of obtaining a positive value for
those indicators provide interesting insights on the way the Naive Bayes classifier takes
a decision.

In order to justify the costs of collecting a sufficiently large real world labelled data
set in our context (engine health monitoring), additional experiments are needed. In
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type of indicator no change variance mean trend

confu(2,3) 0.010333 0.011 0.971 0.939
F test 0.020667 0.83 0.742 0.779
U test 0.027333 0.03 0.977 0.952

ratef(0.1) 0.0016667 0.69 0.518 0.221
confu(4,5) 0.034333 0.03 0.986 0.959
confu(3,5) 0.0013333 0.001 0.923 0.899

U test 0.02 0.022 0.968 0.941
F test 0.042 0.853 0.793 0.813

rateu(0.1) 0.00033333 0.001 0.906 0.896
confu(4,5) 0.019 0.02 0.946 0.927
conff(3,5) 0.052333 0.721 0.54 0.121

U test 0.037667 0.038 0.983 0.951
KS test 0.016 0.294 0.972 0.936

confu(3,5) 0.049 0.043 0.988 0.963
F test 0.030667 0.841 0.77 0.801
U test 0.043 0.043 0.981 0.963

lseqf(0.3) 0.0093333 0.749 0.59 0.36
rateu(0.1) 0.001 0.002 0.896 0.895
lsequ(0.1) 0.062667 0.06 0.992 0.949
confu(3,5) 0.025667 0.021 0.963 0.936
lseqf(0.3) 0.008 0.732 0.656 0.695
KS test 0.016333 0.088 0.955 0.93

confu(3,5) 0 0 0.003 0.673
Table 6. Probability of observing 1 conditionally the class, for each of the 23 best indicators ac-
cording to mRMR for data set A. Confu(k,n) corresponds to a positive MannWhitneyWilcoxon U
test on k windows out of n consecutive ones. Conff(k,n) is the same thing for the F-test. Ratef(β )
corresponds to a positive F-test on β ×m windows out of m. Lseqf(β ) corresponds to a posi-
tive F-test on β ×m consecutive windows out of m. Lsequ(β ) is the same for a U test. Detailed
parameters of the indicators have been omitted for brevity.
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particular, multivariate data must be studied in order to simulate the case of a com-
plex system made of numerous sub-systems. This will naturally lead to more complex
anomaly models. We also observed possible limitations of the feature selection strategy
used here as the performances displayed abrupt changes during the forward procedure.
More computationally demanding solutions, namely wrapper ones, will be studied to
confirm this point.

It is also important to notice that the classification accuracy is not the best way
of evaluating the performances of a classifier in the engine health monitoring context.
Firstly, engine health monitoring involves intrinsically a strong class imbalance [11].
Secondly, engine health monitoring is a cost sensitive area because of the strong impact
on airline profit of an unscheduled maintenance. It is therefore important to take into
account specific asymmetric misclassification cost to get a proper performance evalua-
tion.

The Gaussian assumption made on the noise of the simulated data is a strong one.
In our future work, we plan to use more realistic noise and to test the robustness of the
methodology. We will evaluate if we can compensate this new complexity with the use
of more complex indicators.
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