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Abstract. Chemical named-entity recognition (chemical NER) is the task of ex-
tracting chemical information and chemical-related entities such as drug names
and source materials from text in several domains such as bioinformatics and
nanoinformatics. There have been several attempts to construct corpora for han-
dling such chemical-related information based on different corpus-construction
guidelines. Even though these guidelines contain common types of chemical in-
formation, they differ in several ways. As a result, chemical NER tools devel-
oped for a particular guideline might be able to extract common chemical named
entities, but they may have problems extracting other chemical-related entities.
Assuming the differences between these guidelines are consistent, the pattern of
success and failure of the chemical NER tools might also be consistent. In this pa-
per, we present an ensemble-learning approach that uses the conditional random
field (CRF) as a machine-learning technique to fuse a variety of different charac-
teristic chemical NER tools based on different guidelines to construct a chemical
NER for a particular guideline. To achieve consistent tokenization across these
different tools, we applied a post-tokenization mechanism. We evaluated the sys-
tem using the BioCreative IV, CHEMDNER task datasets. We confirmed that
the ensemble-learning approach using a combination of chemical NER tools is
better than a simple domain-adaptation approach using just one chemical NER
tool. We also confirmed that the ensemble-learning approach could improve the
performance of a well-tuned rule-based chemical NER tool on certain tasks.

Keywords: Chemical named entities recognition, Ensemble learning, Conditional
random field, Text tokenization.
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1 Introduction

Recently, we have become able to use large quantities of textual data for extracting use-
ful information. As an example, we can use a research article database as “big data”
for understanding research trends and new research results. This is a new frontier for
utilizing machine-learning techniques. There are two main approaches in this domain,
namely analyzing bibliographic information to identify research trends [1, 2] and ex-
tracting useful information by using text-mining techniques [3, 4].

Chemical named-entity recognition (chemical NER) is an application domain for
extracting chemical information from text. Extraction of all the chemical named entities
from a paper is desirable in finding articles that are related to particular chemical named
entities. In addition, chemical information plays a significant role in a variety of related
disciplines such as bioinformatics [5] and nanoinformatics [6]. For example, chemical
information could help detect drug-protein interaction in the bioinformatics domain or
source materials in nanodevice-development experiments within the nanoinformatics
discipline.

Chemical NER tasks began with extracting general chemical named-entity informa-
tion and expanded to meet the demand for extracting chemical-related named entities
(such as drugs) that are used in particular research domains. In such an expansion,
new guidelines were created to include the new types of entities. Because these guide-
lines also aim to extract general chemical named entities, they are similar to those used
for the general chemical NER task but also include guidelines for the extraction of
new types of chemical-related named entities. At an early stage, the SCAI corpus [4]
of general chemical named entities was created to identify the International Union of
Pure and Applied Chemistry (IUPAC) entities [7]. Another approach was to create a
chemical named-entity dictionary such as the Chemical Entities of Biological Interest
(ChEBI) [8].

To support these chemical NER tasks, several chemical NER tools were developed
to extract chemical named entities from text. Because there was no standard guideline
of the chemical NER task, these tools were developed based on one of the guidelines.
At an early stage of chemical NER tool development, most tools were evaluated using
the SCAI corpus, which was a large corpus that was freely available for such tasks. This
means that most chemical NER tools, such as OSCAR4 [9], and ChemSpot [10], were
developed primarily for the chemical NER task defined by the SCAI corpus.

In this paper, we propose a method for applying these chemical NER tools to the
BioCreative IV, CHEMDNER task [5] based on an ensemble-learning technique. This
task aims to extract drug names in addition to general chemical named entities. BioCre-
ative IV, CHEMDNER corpus uses the abstracts of chemical-related papers in MED-
LINE. Chemical-related terms are identified as the offset information of such terms
from the beginning position of the text. Left side of Figure 1 shows an example of those
terms’ information. Right side of the figure represents illustrated interpretation using
abstract text information.

For this very recent task, a simple ensemble-learning approach based on voting [11]
is not appropriate. Therefore, we use all the system outputs of these chemical NER tools
as features of a conditional random field (CRF) model [12], in addition to linguistic
features, such as lexical and orthogonal features, that are widely used for chemical
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Fig. 1. BioCreative IV, CHEMDNER corpus data snapshot

NER tasks. This approach is similar to the concept of domain adaptation [13] in natural
language processing (NLP), which uses machine-learning results from corpora of a
variety of domains to analyze texts in a new domain.

Because different chemical NER tools use different tokenization schemas for text
tokenization, it is necessary that the ensemble-learning approach should handle any in-
consistency between the outputs of the chemical NER tools. We apply a post-tokenization
mechanism to generate more flexible tokenization schema that can adapt to a variety of
chemical NER-tool tokenization schemas.

This paper has five sections. Following this Introduction, Section 2 reviews related
work involving chemical NER tools and ensemble learning in NLP. Section 3 discusses
the construction of a chemical NER tool using the output of other chemical NER tools.
We also discuss how to integrate tokenization results from different tools. In Section 4,
our chemical NER tool is evaluated in terms of the BioCreative IV, CHEMDNER cor-
pus. To investigate the effectiveness of our ensemble-learning approach, we conducted
three experiments. The first used chemical NER tools developed prior to the BioCre-
ative IV, CHEMDNER task. The second used rule-based chemical NER tools devel-
oped for the BioCreative IV, CHEMDNER task. In the third experiment, we evaluated
our system using the official test dataset of the BioCreative IV, CHEMDNER task. We
confirm that the ensemble-learning approach outperforms the standalone performance
of each chemical NER tool by a statistically significant amount. Even for a rule-based
system that is tuned for a specific task, the ensemble-learning approach can offer a
slight but statistically significant improvement in precision and F-score. In addition, we
confirm that our tokenization mechanism considerably improved the performance of
the ensemble-learning approach. Section 5 concludes the paper.

2 Related Work

There are two major approaches to implementing chemical NER tools. The first is a
machine-learning approach that uses several linguistic features such as POS, lemma-
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tization form, and orthogonal features to identify chemical named entities. For exam-
ple, ChemSpot [10] is one of the best open systems based on this approach. It also
uses dictionary-based features. Because the performance of the released version of
ChemSpot is mainly evaluated in terms of the SCAI corpus, this tool has been developed
to extract chemical named entities based on SCAI guidelines. The second approach is
rule based, using a chemical dictionary and syntactic patterns to represent chemical
named entities via regular expressions. For example, OSCAR4 [9] is one of the best
open systems implementing this approach (OSCAR4 also uses machine-learning-based
methods in the form of a maximum-entropy Markov model). OSCAR4 uses the guide-
lines of the ChEBI database. Other tools also use a hybrid approach, combining rule-
based and machine-learning-based methods.

Because there are many research domains that use chemical information, these
chemical NER tools have been applied to a variety of research domains. However, be-
cause of the variations in chemical-related entities across domains, these tools may
not be sufficient to extract all chemical-related information in a particular domain. For
example, drug names are chemical-related named entities, but general chemical NER
tools cannot recognize all of them. To meet these new demands, a new corpus for
extracting chemical and drug names was developed in the BioCreative IV, CHEMD-
NER task [14]. Even though the corpus guidelines share certain chemical entities with
general chemical NER guidelines, several differences remain. Because of these differ-
ences, chemical NER tools that were developed using general chemical NER guidelines,
such as ChemSpot and OSCAR4, might not perform well when tested with the new
task. Some implementations for named-entity recognition have adopted an ensemble-
learning approach. For example, Dimililer et al. [15] describe classifier subset selection
for biomedical named-entity recognition. In this work, a vote-based classifier selec-
tion scheme has an intermediate level of search complexity between static classifier
selections and real-value and class-dependent weighting approaches. Zhou et al. [16]
describe voting-based ensemble classifiers to detect hedges and their scopes. Another
ensemble-learning approach assumes that instead of searching for the best-fitting fea-
ture set for a particular classifier, an ensemble of several classifiers that are trained
using different feature representations could be a more fruitful approach. For example,
Ekbal et al. [17] apply this approach to named-entity recognition. However, all of these
approaches assume that all machine-learning systems are constructed for the same task.

3 Framework for Ensemble-learning Approach

3.1 Framework Architecture

The ensemble approach we are proposing uses CRF to fuse several chemical NER tools
that use different recognition schemas. This framework decomposes input text into a se-
quence of tokens (tokenization), generates characteristic features for each token, namely
linguistic features, and the results of chemical NER tools for this token, and then uses
CRF to predict the label of the token. Based on CRF results, the system can identify
chemical entities and drug names in a text.

A General text tokenizer (e.g., POS tagger) might not be good enough to adapt to
multiple tokenization schemas applied by different chemical NER tools. Our system im-
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plements a post-tokenization mechanism to overcome such problems. First, we discuss
the tools we are using in more detail.

Chemical NER Tools We have used the following chemical NER tools:

– SERB-CNER (Syntactically enhanced rule-based chemical NER) is a rule-based
chemical-entity recognizer that uses regular expressions to identify chemical com-
pounds. This tool also uses syntactical rules to solve any mismatches that might
occur between chemical compounds and normal text. For example, we assume that
short words at the beginning of a sentence, such as “In”, do not represent a chem-
ical compound such as Indium. We also try to identify abbreviations of technical
terms used within the document and avoid tagging them as chemical compounds.
We originally developed this tool to identify chemical compounds in nanocrystal-
development research papers [18].

– ChemSpot is a named-entity recognition tool for identifying mentions of chemicals
in natural language texts, including trivial names, drugs, abbreviations, molecular
formulas and IUPAC entities. ChemSpot uses a hybrid approach that combines a
CRF with a dictionary. ChemSpot is trained by using SCAI corpora [19] annotated
mainly with IUPAC [7] entities.

– OSCAR4 is an open-source extensible system for the automated annotation of
chemistry in scientific articles. It uses a rule-based approach, in addition to machine-
learning-based methods in the form of a maximum-entropy Markov model, to iden-
tify chemical entities.

Linguistic Features We have used GPoSTTL as a basic text tokenizer and part-of-
speech tagger to define the basic type of each token. GPoSTTL is an enhanced version
of Eric Brill’s rule-based tagger. In addition to the POS tag, GPoSTTL generates a
lemmatization feature. Based on GPoSTTL results, we use regular expressions to gen-
erate orthogonal features as defined in [20]. An orthogonal feature is a symbol that
represents various styles of surface symbols (such as all capitals, lowercase, or digits).

Conditional Random Field (CRF) A CRF [12] is a probabilistic sequence-labeling
model commonly used in NER tasks. In such a task, a CRF model takes an input of a text
token sequence and seeks to assign a categorical label for each member of a sequence
relying on statistical inference. Because a named entity might span over multiple tokens,
IOB format is used to define entity boundaries, where “B” identifies the beginning of
a named entity, “I” declares that the token is inside the named entity and “O” means
that the token is outside the named entity. To label the token sequence, a CRF model
builds a set of inference rules using a training dataset in which each token is attached
to a feature set and labeled correctly. As noted linguistic features such as token surface,
POS tag, lemmatization, and orthogonal features, are commonly used in NER tasks.

The inference rules take into consideration the target label of a token in relation to
both its own feature set and also the feature sets of neighboring tokens within a certain
feature window size. The feature window is defined as a function of the target label to
n-gram feature combination. For example, in a bigram, the current target label is defined
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as a function of the combination of two features, one from the current token’s feature
set plus another one from a neighboring token’s feature set. This makes CRF well suited
for natural language processing applications [21, 22]. Figure 2 shows an outline of the
CRF model.
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Fig. 2. Outline of the CRF model.
Srfc=token surface, POS=POS tag, Orth=orthogonal feature, Lem=lemmatization, CEM is target
label.

3.2 System Implementation

Figure 3 shows an overall activity diagram for the system. In our system, in addition to
the linguistic features, we use the results of the chemical NER tools for the CRF feature
set. For the feature template, we use a template that is compatible with the CoNLL
2000 shared task and the Base-NP chunking task [23]. We use unigram, bigram, and
trigram feature combinations. This template can handle a large number of features for
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Fig. 3. A system overall activity diagram
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one element. Table 1 shows an example of training data for CRF. The system uses
CRF++ (Version 0.58) [24], an implementation of CRF, as a tool for the sequence-
labeling task. The features of CRF++ are:

– Surface symbol: symbol used to represent a term.
– Part-of-speech (POS) tag: result from the GPoSTTL tagger (Version 0.9.3) [25].
– Lemmatization: symbol that is a result from the POS tagger.
– Orthogonal feature: identified using regular expressions based on the POS tag.
– SERB-CNER tag: output of the SERB-CNER system in IOB format.
– ChemSpot tag: output of ChemSpot (Version 1.5) [26] in IOB format.
– OSCAR4 tag: output of OSCAR4 in IOB format. (We use the output of OSCAR4-

related ChemicalTagger (Version 1.3) [27].)

Orthogonal features are defined in [20]. The tokenization mechanism and merging
chemical NER results are discussed in detail in Section 3.3. Confidence values for the
extracted terms are calculated based on the CRF output. The confidence values for
multiple terms are calculated by multiplying of confidence values for all values of “B”
and “I”.

3.3 Tokenization Mechanism

In a sequence-label task, a certain tool returns the labeling result as a feature of each to-
ken, word boundaries of the recognized named entities are defined by using tokenization
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Table 1. A sample training data for CRF

Token POS Lem Orth SERB-CNER ChemSpot OSCAR4 CEM
chemical NN chemical Lowercase O O O O

compounds NNS compound Lowercase O O O O
, , , Comma O O O O

including VVG include Lowercase O O O O
4 CD 4 DigitNumber O O O O

flavone NNS flavone OtherHyphon O B B B-CEM
- NNS - OtherHyphon O I I I-CEM
C NNS C OtherHyphon O I I I-CEM
- NNS - OtherHyphon O I I I-CEM

glycosides NNS glycosides OtherHyphon O I I I-CEM
POS=POS tag, Orth=orthogonal feature, Lem=lemmatization, CEM=target label.

results. In chemical NER, parts of long complex terms are often annotated as chemi-
cal named entities. However, because it is usually not necessary to analyze the inner
structure of a term in a general POS tagging task, a general POS tagger (such as the
GPoSTTL tagger) tends to treat such a long complex term as one token. Similar prob-
lems in the biomedical domain have already been discussed [28].

In this study, we aim to aggregate the results of different chemical NER tools. De-
pending on recognition schema, each chemical NER tool has its own text tokenizer.
In many cases, these tokenization schemas are inconsistent. For example, in Abstract
23122060 of the BioCreative IV, CHEMDNER corpus, “d-glucose” is tokenized as one
entity by the POS tagger and OSCAR4 tokenizer and labeled as a chemical by OS-
CAR4, whereas the ChemSpot tokenizer considers only “glucose” as a chemical entity.
Because of this discrepancy, this result from ChemSpot cannot be matched with the
POS tagger tokenization. Figure 4 illustrates this case of inconsistent tokenization.

To solve this problem, it is necessary to apply particular tokenization techniques to
generate a greater number of tokens. This will achieve better labeling results, and has
the advantage of being highly consistent [29].

We have analyzed the matching ratio between the tokenization of the text by GPoSTTL
and chemical entities, and the drug-name boundaries in the annotation results of other
chemical NER tools, including the “gold standard” manual annotation of the BioCre-
ative IV, CHEMDNER corpus. The tokenization of GPoSTTL did not achieve a high
matching ratio, particularly with the “gold standard” annotation of the BioCreative IV,
CHEMDNER corpus. A low matching ratio between POS tagger tokens on the one
hand and results from chemical NER tools and “gold standard” annotation on the other
will cause inappropriately noisy training data. For example, unmatched results from
chemical NER tools will not be labeled correctly (either unlabeled or loosely labeled as
a chemical entity). Therefore, the performance will not be satisfactory [30].

To handle this issue, we analyzed the tokenization schemas of chemical entities and
drug names annotated by the chemical NER tools including the “gold standard” anno-
tation of the BioCreative IV, CHEMDNER corpus. We found that ChemSpot and the
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“gold standard” annotation of the BioCreative IV, CHEMDNER corpus tend to tokenize
chunks of text containing “–”, “+” and “ / ” into multiple tokens using these elements
as separators. Because GPoSTTL does not decompose such chunks, the boundaries of
chemical entities and drug names in the output of other chemical NER tools cannot be
matched correctly. To solve this problem, it is necessary to generate a greater number
of smaller tokens to adapt to such mismatches in tokenization schemas and to achieve
better labeling results.

We implemented a post-tokenization mechanism for the POS tagger by adding three
new tokenization rules for post-tokenization processing using the GPoSTTL tagger. We
partitioned chunks containing “–”, “+” and “ / ” into different tokens as for other chem-
ical NER tools. We then checked the matching ratio after this post-tokenization process
on the three datasets of the BioCreative IV, CHEMDNER corpus (training dataset, de-
velopment dataset and test dataset). Table 2 shows the results of this analysis.

Table 2. Tokenization matching ratio analysis

Training dataset Development dataset Test dataset
GPoSTTL Post-tokenization GPoSTTL Post-tokenization GPoSTTL Post-tokenization

ChemSpot 0.93 1 0.92 1 0.92 0.99
OSCAR4 0.99 0.99 0.99 0.99 0.98 0.98

Gold standard 0.87 0.99 0.88 0.99 0.88 0.99

It is clear from Table 2 that the matching ratio between the POS tagger tokens and
the chemical entities and drug names boundaries has increased considerably. For the
“gold standard” annotation data, we achieved a matching ratio of 0.99. This matching
ratio has increased the performance of the overall system.
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4 Experiments and Discussion

4.1 First Experiment: Evaluation of the Ensemble-learning Approach and
Post-tokenization Mechanism

The goal of the first experiment was to compare the performance of the ensemble-
learning approach with a simple domain-adaptation approach that used only one chem-
ical NER tool combined with CRF, on the BioCreative IV, CHEMDNER corpus. In ad-
dition, we wanted to check the effectiveness of post-tokenization on the performance.
The BioCreative IV, CHEMDNER corpus contains three datasets (training, develop-
ment and test). Each of the training and development datasets contains 3,500 abstracts,
and the test dataset contains 3,000 abstracts.

We compared the system performance of the ensemble-learning approach before
and after post-tokenization to evaluate the effectiveness of the post-tokenization pro-
cess. We also compared the ensemble-learning approach with the results of a simple
domain-adaptation approach that used CRF plus one of the chemical NER tools at a time
(ChemSpot, OSCAR4 and SERB-CNER), together with post-tokenization. We used ten
fold cross-validation on the combined three sets of the BioCreative IV, CHEMDNER
corpus (training, development and test). In each fold, we used 90% of each of the three
sets as training data and the remaining 10% as test data. We measured the performance
using both macro- and micro-averages for precision, recall and F-score. The macro-
average uses the performance of each abstract in the test dataset for calculating the
average for all test data, whereas the micro-average uses all abstracts as one document
for calculating the performance. Table 3 shows the macro-average and micro-average
results for the ten fold cross-validation.

Table 3. Average system performance on the BioCreative IV, CHEMDNER corpus

Macro-average Micro-average
Precision Recall F-score Precision Recall F-score

SERB-CNER+CRF 85.31 69.52 74.23 89.24 68.15 77.28
ChemSpot+CRF 85.26 76.77 78.84 88.10 76.21 81.72
OSCAR4+CRF 86.00 76.41 78.88 88.65 74.67 81.06

Ensemble 78.72 70.83 72.72 82.26 70.86 76.13
Ensemble/p.tok 86.62 $* 79.46 $*# 81.13 $*# 88.76 * 78.60 $*# 83.37 $*#

CRF: Conditional Random Field.
Ensemble = (SERB-CNER+ChemSpot+OSCAR4+CRF) without post-tokenization.

Ensemble/p.tok = (SERB-CNER+ChemSpot+OSCAR4+CRF) with post-tokenization.
Underlining indicates significant values for the ensemble system compared with the

performance before post-tokenization. A dollar sign ($) indicates a significant value compared
with SERB-CNER combined with CRF. An asterisk (*) indicates a significant value compared
with ChemSpot combined with CRF. A hash (#) indicates a significant value compared with
OSCAR4 combined with CRF. All significance measures were at the 0.05 level (P < 0.05).
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Considering Table 3, we can observe the following:

– Tokenization considerably affects the performance. Comparing the performance of
the system before and after the post-tokenization process, it is clear that tokeniza-
tion of text by the POS tagger can significantly affect the annotation of chemical
entities and drug names. The use of a chemical-oriented POS tagger can improve
the system performance because it can overcome some of the tokenization mis-
matches that can occur between normal text and chemical entities.

– Our system (the ensemble-learning approach with CRF) has, in general, obtained
better F-scores than any of the simple domain-adaptation approaches. The system
clearly outperforms the original chemical NER tools. There might be some discrep-
ancies between the definitions of what is considered a chemical entity by different
recognizers. However, we find that the use of orthogonal features has helped to
reduce the effect of this problem by enabling the CRF system to learn rules that
include both lexical and chemical tags. We found that Ensembling different chem-
ical NER tools with different characteristics and different annotation criteria could
leverage the performance because each tool can add new information to the system.

4.2 Second Experiment: Use of the Ensemble-learning Approach for a
Well-tuned Rule-based Chemical NER

The goal of the second experiment was to check the ability of the ensemble-learning
approach to leverage the performance of a well-tuned rule-based system for a specific
task.

To investigate this effectiveness, we used one of the best performing rule-based
chemical NER systems in the official BioCreative IV, CHEMDNER task, namely Lead-
Mine [31]. LeadMine is a grammar- and dictionary-driven approach to chemical entity
recognition. We asked the developer of LeadMine to provide the results data officially
used for the BioCreative IV, CHEMDNER task and used this data for this experiment.
In the experiment, we added the output of LeadMine as a feature, in addition to the fea-
tures of the other chemical NER tools we discussed before. We used a ten fold cross-
validation test on the BioCreative IV, CHEMDNER corpus. Because LeadMine was
tuned using the training and development datasets of the corpus, it was not appropriate
to use these datasets in the evaluation. Therefore, in each fold, we trained both systems
(ensemble and LeadMine with CRF) on a combination of the full training and develop-
ment datasets and 90% of the test dataset. We then tested the systems in each fold on
10% of the test dataset. Table 4 shows the macro-average and micro-average results for
the ten fold cross-validation.

From Table 4, it is clear that the ensemble-learning approach slightly leverages the
performance of a rule-based system tuned for a specific task. Even though the improve-
ment is small, it is statistically significant for precision and F-scores.

It is also clear that the ensemble-learning approach can help find new rules by check-
ing terms that can only be extracted by the CRF. Analyzing the performance of Lead-
Mine (a rule-based system, and one of the best systems in the BioCreative IV, CHEMD-
NER task), we find that approximately 6% of the “gold standard” entities were recalled
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Table 4. Average system performance including LeadMine on the BioCreative IV, CHEMDNER
test dataset

Macro-average Micro-average
Precision Recall F-score Precision Recall F-score

LeadMine+CRF 90.34 85.88 86.88 91.46 85.42 88.33
Ensemble/LeMi 90.67 85.97 87.14 91.91 85.63 88.65

CRF: Conditional Random Field.
Ensemble/LeMi = (SERB-CNER+ChemSpot+OSCAR4+LeadMine+CRF) with

post-tokenization.
Underlining indicates significant values at the 0.05 level (P < 0.05).

by the ensemble-learning approach with CRF but not with LeadMine. However, be-
cause we apparently also lost a different 6% of the “gold standard” entities, the recall
stayed almost the same, while the precision improved. The CRF could identify some
entities that would not be identified by the rule-based system. For example, in Abstract
22173956 in the chunk, “heterocyclic amines” is an entity in the “gold standard” an-
notation. However, the word “ heterocyclic” was not identified by any chemical NER
tool as a chemical entity or drug name, whereas “amines” was identified as such by all
rule-based tools. The CRF enables us to identify such cases by learning them from the
training dataset. Table 5 illustrates this case in IOB format.

Table 5. Gold standard entity recognized by CRF.

Tkn B-POS E-POS POS Lem Orth CNER ChemSpot OSCAR4 Lead CEM
heterocyclic 469 481 JJ heterocyclic Lowercase O O O O B-CEM

amines 482 488 NNS amine Lowercase B O B B B-CEM
Tkn=token, B-pos=beginning of position, E-pos=end of position, POS=part-of-speech tag,

Lem=lemmatization, Orth=orthogonal feature, CNER=SERB-CNER, Lead=LeadMine,
CEM=gold standard.

4.3 Third Experiment: System Evaluation using the Official BioCreative IV,
CHEMDNER Test Dataset

The goal of this experiment was to evaluate our final system in terms of the official
test dataset of the BioCreative IV, CHEMDNER task. We also evaluated each chemical
NER tool performance. The results of this experiment can be used as a reference for
comparison between our system and other systems.

We trained the system on a combination of the training dataset and the develop-
ment dataset provided by BioCreative IV, CHEMDNER corpus. We tested the system
using different combinations of chemical NER tools with the layouts described above
(linguistic features + chemical NER-tool combinations) using the official test dataset
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of the BioCreative IV, CHEMDNER corpus. Table 6 shows the performance of the
various chemical NER systems on the official test dataset. For the LeadMine system,
because we could only obtain the final output of the system, we show the performance
as reported in the official BioCreative IV, CHEMDNER task [5]. For SERB-CNER,
the performance, particularly for recall, is low because this tool uses only very simple
rules to identify chemicals. These simple rules fail to generalize towards more chemical
entities.

Table 6. Performance of different chemical NER systems for the official test dataset

System Macro-average Micro-average
Precision Recall F-score Precision Recall F-score

SERB-CNER 23.79 11.37 13.42 43.95 11.26 17.93
ChemSpot 66.92 57.59 58.52 72.94 58.87 65.15
OSCAR4 42.71 62.88 47.34 40.66 62.08 49.13
LeadMine 87.25 81.41 82.72 89.25 81.48 85.19
Ensemble 87.36 78.17 80.68 89.41 77.47 83.01

Ensemble/LeMi 90.09 85.09 86.34 91.52 84.85 88.06
CRF: Conditional Random Field.

Ensemble = SERB-CNER+ChemSpot+OSCAR4+CRF.
Ensemble/LeMi = SERB-CNER+ChemSpot+OSCAR4+LedMine+CRF.

4.4 Discussion

In this paper, we propose a framework for using chemical NER tools as constituents
for ensemble learning. Since these tools did not aim to extract drug names as chemical-
related entities, they cannot extract such drug names appropriately. Therefore, we con-
firmed that a simple domain-adaptation method that uses linguistic features and one tool
output for learning improves the performance of the automatic extraction. This result
shows that it is better to use such a domain-adaptation method for chemical NER tasks
that aim to extract new chemical-related entities.

We also confirmed that the ensemble-learning approach that uses multiple outputs
of chemical NER tools further improves the performance and that the improvement
is statistically significant. This result shows that consistent differences between target
task guideline and each chemical tool can be used to construct new inference rules
to add more precise annotation. In addition, the ensemble-learning approach can find
new entities that a rule-based system tuned for a specific task cannot. Therefore, the
ensemble-learning approach can be used to construct new rules that can be added to
the rule-based system. This approach can also be used in an expansion toward different
kinds of chemical-entity-related domains in the future. For example, in the nanoinfor-
matics domain, researchers use chemicals as source materials for their experiments. It
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is necessary to extract chemical entities in this domain when analyzing experimental
results.

5 Conclusion

In this paper, we have discussed an ensemble-learning approach that aggregates dif-
ferent chemical NER tools with different characteristics and different annotation cri-
teria. This approach combines simple domain adaption and general ensemble-learning
features. We confirmed that this approach is generally promising, because each chem-
ical NER tool can contribute some unique new findings, thereby leveraging the perfor-
mance. This approach can also be used in enhancing the performance of a well-tuned
rule-based chemical NER system by providing information to enable the creation of
new rules. Finally, we have found that the text-tokenization method considerably af-
fects the performance of the system.

In future work, we plan to use the ensemble-learning approach to analyze the dif-
ferences between similar but not identical guidelines. Resolving such differences could
support the optimization of a system to identify chemical entities in the context of a
particular objective.
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